Spaces:
Sleeping
Sleeping
File size: 24,594 Bytes
e5b3bea 673ff47 e5b3bea 673ff47 e5b3bea 9e81c24 a699baf e5b3bea a699baf 47d96da a699baf e5b3bea a699baf e5b3bea d3745f7 e5b3bea 9e81c24 d3745f7 fdf987c e5b3bea d3745f7 e5b3bea 47d96da e5b3bea 9e81c24 e5b3bea fdf987c 47d96da fdf987c e5b3bea fdf987c e5b3bea 673ff47 e5b3bea 673ff47 e5b3bea 673ff47 e5b3bea 673ff47 e5b3bea e6c1472 e5b3bea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import gradio as gr
import json
import pickle
import pandas as pd
import numpy as np
from datetime import datetime
import os
class EnergyMLPredictor:
def __init__(self):
self.rf_model = None
self.rf_preprocessor = None
self.xgb_model = None
self.xgb_encoders = None
self.threshold_model_83 = None
self.threshold_model_90 = None
self.threshold_preprocessor = None
self.models_loaded = False
def load_models(self):
"""Load all models from pickle files"""
try:
# Load Random Forest Energy Model
if os.path.exists('rf_energy_model.pkl'):
with open('rf_energy_model.pkl', 'rb') as f:
rf_data = pickle.load(f)
self.rf_model = rf_data['model']
self.rf_preprocessor = rf_data['preprocessor']
# Load XGBoost Energy Model
if os.path.exists('xgboost_energy_model.pkl'):
with open('xgboost_energy_model.pkl', 'rb') as f:
xgb_data = pickle.load(f)
self.xgb_model = xgb_data['model']
self.xgb_encoders = xgb_data['label_encoders']
# Load Threshold Models
if os.path.exists('threshold_model_83_autoclave.pkl'):
with open('threshold_model_83_autoclave.pkl', 'rb') as f:
threshold_data = pickle.load(f)
self.threshold_model_83 = threshold_data['model']
self.threshold_preprocessor = threshold_data['preprocessor']
if os.path.exists('threshold_model_90_autoclave.pkl'):
with open('threshold_model_90_autoclave.pkl', 'rb') as f:
threshold_data = pickle.load(f)
self.threshold_model_90 = threshold_data['model']
self.models_loaded = True
return "Models loaded successfully"
except Exception as e:
return f"Error loading models: {str(e)}"
def predict_threshold(self, json_input):
"""Predict threshold exceedance"""
try:
if not self.models_loaded:
return "Error: Models not loaded"
if not self.threshold_model_83 or not self.threshold_model_90:
return "Error: Threshold models not available"
data = json.loads(json_input)
# Handle both single object and array formats
if not isinstance(data, list):
data = [data]
# Process all items
results_83 = []
results_90 = []
for item in data:
# Parse input data
date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
# Color mapping
color_mapping = {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}
if isinstance(item['cor'], str):
cor_str = item['cor'].lower()
else:
cor_str = color_mapping.get(item['cor'], 'incolor')
# Handle different field name formats for threshold
boosting_val = item.get('pot_boost', item.get('ext_boosting', 3.0))
# Create input features (with autoclave)
input_data = {
'boosting': boosting_val,
'espessura': item['espessura'],
'extracao_forno': item['extracao_forno'],
'porcentagem_caco': item['porcentagem_caco'],
'cor': cor_str,
'prod_e': item.get('Prod_E', item.get('prod_e', 1)),
'prod_l': item.get('Prod_L', item.get('prod_l', 1)),
'autoclave': item.get('autoclave', 1),
'week_day': date_obj.weekday(),
'month': date_obj.month,
'quarter': (date_obj.month - 1) // 3 + 1,
'is_weekend': int(date_obj.weekday() >= 5),
'week_of_year': date_obj.isocalendar()[1]
}
# Convert to DataFrame
input_df = pd.DataFrame([input_data])
# Preprocess
X_processed = self.threshold_preprocessor.transform(input_df)
# Make predictions with error handling
try:
prob_83_raw = self.threshold_model_83.predict_proba(X_processed)
prob_83 = prob_83_raw[0][1] if len(prob_83_raw[0]) > 1 else prob_83_raw[0][0]
# Ensure probability is between 0 and 1
prob_83 = max(0.0, min(1.0, float(prob_83)))
except Exception as e:
print(f"Error with threshold_83 prediction: {e}")
prob_83 = 0.0
pred_83 = int(prob_83 > 0.5)
try:
prob_90_raw = self.threshold_model_90.predict_proba(X_processed)
prob_90 = prob_90_raw[0][1] if len(prob_90_raw[0]) > 1 else prob_90_raw[0][0]
# Ensure probability is between 0 and 1
prob_90 = max(0.0, min(1.0, float(prob_90)))
except Exception as e:
print(f"Error with threshold_90 prediction: {e}")
prob_90 = 0.0
pred_90 = int(prob_90 > 0.5)
# Add to results
results_83.append({
"datetime": item['data'],
"probabilidade_de_estouro": round(prob_83, 4),
"estouro_previsto": pred_83
})
results_90.append({
"datetime": item['data'],
"probabilidade_de_estouro": round(prob_90, 4),
"estouro_previsto": pred_90
})
# Format response
result = {
"predictions": {
"prediction_1": results_83,
"prediction_2": results_90
}
}
return json.dumps(result, indent=2)
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}"
def predict_energy_rf(self, json_input):
"""Predict energy using Random Forest"""
try:
if not self.models_loaded or not self.rf_model:
return "Error: Random Forest model not available"
data = json.loads(json_input)
if not isinstance(data, list):
data = [data]
results = []
for item in data:
# Parse input
date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
# Handle different field name formats (boosting vs ext_boosting)
if 'boosting' in item:
boosting_val = float(str(item['boosting']).replace(',', '.'))
elif 'ext_boosting' in item:
boosting_val = float(str(item['ext_boosting']).replace(',', '.'))
else:
boosting_val = 0.0
# Handle extracao_forno field
if 'extracao_forno' in item:
extracao_val = float(str(item['extracao_forno']).replace(',', '.'))
else:
extracao_val = 800.0
# Create features
input_data = {
'boosting': boosting_val,
'espessura': item['espessura'],
'extracao_forno': extracao_val,
'porcentagem_caco': item['porcentagem_caco'],
'cor': str(item['cor']).lower() if isinstance(item['cor'], str) else {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}.get(item['cor'], 'incolor'),
'prod_e': item.get('prod_e', item.get('Prod_E', 1)),
'prod_l': item.get('prod_l', item.get('Prod_L', 1)),
'autoclave': item.get('autoclave', 1),
'week_day': date_obj.weekday(),
'month': date_obj.month,
'quarter': (date_obj.month - 1) // 3 + 1,
'is_weekend': int(date_obj.weekday() >= 5),
'week_of_year': date_obj.isocalendar()[1],
'day_of_month': date_obj.day,
'day_of_year': date_obj.timetuple().tm_yday
}
# Predict
input_df = pd.DataFrame([input_data])
X_processed = self.rf_preprocessor.transform(input_df)
prediction = self.rf_model.predict(X_processed)[0]
results.append({
"data": date_obj.strftime('%d-%m-%Y'),
"predictions": float(prediction)
})
return json.dumps(results, indent=2)
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}"
def predict_energy_xgb(self, json_input):
"""Predict energy using XGBoost"""
try:
if not self.models_loaded or not self.xgb_model:
return "Error: XGBoost model not available"
data = json.loads(json_input)
if not isinstance(data, list):
data = [data]
results = []
for item in data:
# Parse input
date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
# Handle different field name formats (boosting vs ext_boosting)
if 'boosting' in item:
boosting_val = float(str(item['boosting']).replace(',', '.'))
elif 'ext_boosting' in item:
boosting_val = float(str(item['ext_boosting']).replace(',', '.'))
else:
boosting_val = 0.0
# Handle extracao_forno field
if 'extracao_forno' in item:
extracao_val = float(str(item['extracao_forno']).replace(',', '.'))
else:
extracao_val = 800.0
# Create features (match training: numerical + categorical + boolean, NO day_of_month/day_of_year)
input_data = {
'boosting': boosting_val,
'espessura': item['espessura'],
'extracao_forno': extracao_val,
'porcentagem_caco': item['porcentagem_caco'],
'cor': str(item['cor']).lower() if isinstance(item['cor'], str) else {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}.get(item['cor'], 'incolor'),
'week_day': date_obj.weekday(),
'month': date_obj.month,
'quarter': (date_obj.month - 1) // 3 + 1,
'week_of_year': date_obj.isocalendar()[1],
'prod_e': item.get('prod_e', 1),
'prod_l': item.get('prod_l', 1),
'is_weekend': int(date_obj.weekday() >= 5),
'autoclave': item.get('autoclave', 1)
}
# Encode categorical features
input_df = pd.DataFrame([input_data])
for col in input_df.columns:
if col in self.xgb_encoders:
try:
input_df[col] = self.xgb_encoders[col].transform(input_df[col].astype(str))
except ValueError:
# Handle unknown categories
input_df[col] = 0
# Predict
prediction = self.xgb_model.predict(input_df.values)[0]
results.append({
"data": date_obj.strftime('%d-%m-%Y'),
"predictions": float(prediction)
})
return json.dumps(results, indent=2)
except json.JSONDecodeError:
return "Error: Invalid JSON format"
except Exception as e:
return f"Error: {str(e)}"
# Initialize predictor
predictor = EnergyMLPredictor()
def make_prediction(model_choice, json_input):
"""Make prediction based on model choice"""
if not predictor.models_loaded:
load_msg = predictor.load_models()
if "Error" in load_msg:
return load_msg
if model_choice == "Threshold Detection":
return predictor.predict_threshold(json_input)
elif model_choice == "Energy Prediction (Random Forest)":
return predictor.predict_energy_rf(json_input)
elif model_choice == "Energy Prediction (XGBoost)":
return predictor.predict_energy_xgb(json_input)
else:
return "Error: Please select a model"
# Default examples
threshold_example = """{
"data": "2023-01-01",
"cor": 0,
"espessura": 8.0,
"ext_boosting": 65.0,
"extracao_forno": 851.1,
"porcentagem_caco": 15.0,
"pot_boost": 3.0,
"Prod_E": 1,
"Prod_L": 1
}"""
energy_example = """[
{
"data": "2023-01-01",
"boosting": "0,0",
"cor": "incolor",
"espessura": 10,
"extracao_forno": "651,6",
"porcentagem_caco": 10.0,
"prod_e": 1,
"prod_l": 1,
"autoclave": 1
}
]"""
# Test data from holdout period (last 2 months used in training)
week_test_data = """[
{"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0},
{"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
{"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
{"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}
]"""
month_test_data = """[
{"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0},
{"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
{"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
{"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-26", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7549, "extracao_forno": 703.33718364331, "porcentagem_caco": 9.96677008271902, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-27", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8022, "extracao_forno": 698.519152270116, "porcentagem_caco": 10.0355158154479, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-04-28", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.802291106822, "porcentagem_caco": 10.0171149610168, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
{"data": "2025-04-29", "cor": 0, "espessura": 8.0, "ext_boosting": 1.803, "extracao_forno": 702.213883737496, "porcentagem_caco": 9.98271347568585, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
{"data": "2025-04-30", "cor": 0, "espessura": 8.0, "ext_boosting": 1.801, "extracao_forno": 701.164091438783, "porcentagem_caco": 9.99765972843181, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
{"data": "2025-05-01", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7999, "extracao_forno": 701.096395285213, "porcentagem_caco": 9.99862507800837, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
{"data": "2025-05-02", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8016, "extracao_forno": 701.004721690124, "porcentagem_caco": 9.99993264396119, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
{"data": "2025-05-03", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.505291072901, "porcentagem_caco": 10.021368086077, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-05-04", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8036, "extracao_forno": 700.073447985429, "porcentagem_caco": 10.0132350686523, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-05-05", "cor": 0, "espessura": 8.0, "ext_boosting": 0.689, "extracao_forno": 700.60585295748, "porcentagem_caco": 10.0056258028798, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-06", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.123418185867, "porcentagem_caco": 10.026841924692, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-07", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.086556585488, "porcentagem_caco": 10.0273706223712, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-08", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.120389195209, "porcentagem_caco": 10.0412480547676, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-09", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.228099576186, "porcentagem_caco": 9.9680434627127, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-05-10", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.37935572186, "porcentagem_caco": 9.96588147179382, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
{"data": "2025-05-11", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.563378916139, "porcentagem_caco": 10.0205359675357, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-12", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.733542903546, "porcentagem_caco": 10.0324366436888, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-13", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.509702244859, "porcentagem_caco": 10.0213048904162, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-14", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 701.657766576732, "porcentagem_caco": 9.99062553558067, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-15", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 674.645706945424, "porcentagem_caco": 10.0052515424159, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-16", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 653.148421891636, "porcentagem_caco": 9.95179622600148, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-17", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 611.090907286899, "porcentagem_caco": 9.98214819965588, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
{"data": "2025-05-18", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 599.399563235682, "porcentagem_caco": 10.0100173040013, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}
]"""
# Create Gradio interface
with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
gr.Markdown("# Energy ML Prediction System")
gr.Markdown("Cloud deployment with embedded models")
with gr.Row():
with gr.Column():
model_choice = gr.Radio(
choices=[
"Threshold Detection",
"Energy Prediction (Random Forest)",
"Energy Prediction (XGBoost)"
],
label="Select Model",
value="Threshold Detection"
)
# Quick test data options
gr.Markdown("### Quick Test Options")
with gr.Row():
load_week_btn = gr.Button("Load Week Test Data", size="sm")
load_month_btn = gr.Button("Load Month Test Data", size="sm")
clear_btn = gr.Button("Clear", size="sm")
json_input = gr.Textbox(
label="JSON Input",
placeholder="Enter JSON data here...",
lines=15,
value=threshold_example
)
predict_btn = gr.Button("Make Prediction", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Prediction Result",
lines=20,
interactive=False
)
def update_example(choice):
if "Threshold" in choice:
return threshold_example
else:
return energy_example
def load_week_data():
return week_test_data
def load_month_data():
return month_test_data
def clear_data():
return ""
model_choice.change(update_example, inputs=[model_choice], outputs=[json_input])
load_week_btn.click(fn=load_week_data, outputs=json_input)
load_month_btn.click(fn=load_month_data, outputs=json_input)
clear_btn.click(fn=clear_data, outputs=json_input)
predict_btn.click(make_prediction, inputs=[model_choice, json_input], outputs=[output])
with gr.Accordion("Model Information", open=False):
gr.Markdown("""
## Available Models
- **Threshold Detection**: Predict probability of exceeding 8.3 and 9.0 MWh
- **Random Forest**: Energy consumption prediction (R² = 0.72)
- **XGBoost**: Energy consumption prediction (R² = 0.56, winner model)
## Input Formats
See examples that change when you select different models.
""")
if __name__ == "__main__":
app.launch(
auth=("admin", "energy123"),
share=True,
ssr_mode=False
) |