File size: 24,594 Bytes
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673ff47
 
e5b3bea
 
 
 
673ff47
 
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e81c24
a699baf
 
e5b3bea
a699baf
 
 
47d96da
a699baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b3bea
 
 
 
a699baf
 
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3745f7
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b3bea
 
 
 
 
 
 
9e81c24
d3745f7
 
fdf987c
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3745f7
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b3bea
47d96da
e5b3bea
 
 
 
 
9e81c24
e5b3bea
 
 
 
fdf987c
 
47d96da
fdf987c
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf987c
 
 
 
e5b3bea
 
 
673ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673ff47
 
 
 
 
 
 
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673ff47
 
 
 
 
 
 
 
 
e5b3bea
673ff47
 
 
e5b3bea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6c1472
 
e5b3bea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import gradio as gr
import json
import pickle
import pandas as pd
import numpy as np
from datetime import datetime
import os

class EnergyMLPredictor:
    def __init__(self):
        self.rf_model = None
        self.rf_preprocessor = None
        self.xgb_model = None
        self.xgb_encoders = None
        self.threshold_model_83 = None
        self.threshold_model_90 = None
        self.threshold_preprocessor = None
        self.models_loaded = False
        
    def load_models(self):
        """Load all models from pickle files"""
        try:
            # Load Random Forest Energy Model
            if os.path.exists('rf_energy_model.pkl'):
                with open('rf_energy_model.pkl', 'rb') as f:
                    rf_data = pickle.load(f)
                    self.rf_model = rf_data['model']
                    self.rf_preprocessor = rf_data['preprocessor']
            
            # Load XGBoost Energy Model
            if os.path.exists('xgboost_energy_model.pkl'):
                with open('xgboost_energy_model.pkl', 'rb') as f:
                    xgb_data = pickle.load(f)
                    self.xgb_model = xgb_data['model']
                    self.xgb_encoders = xgb_data['label_encoders']
            
            # Load Threshold Models
            if os.path.exists('threshold_model_83_autoclave.pkl'):
                with open('threshold_model_83_autoclave.pkl', 'rb') as f:
                    threshold_data = pickle.load(f)
                    self.threshold_model_83 = threshold_data['model']
                    self.threshold_preprocessor = threshold_data['preprocessor']
            
            if os.path.exists('threshold_model_90_autoclave.pkl'):
                with open('threshold_model_90_autoclave.pkl', 'rb') as f:
                    threshold_data = pickle.load(f)
                    self.threshold_model_90 = threshold_data['model']
            
            self.models_loaded = True
            return "Models loaded successfully"
        
        except Exception as e:
            return f"Error loading models: {str(e)}"
    
    def predict_threshold(self, json_input):
        """Predict threshold exceedance"""
        try:
            if not self.models_loaded:
                return "Error: Models not loaded"
            
            if not self.threshold_model_83 or not self.threshold_model_90:
                return "Error: Threshold models not available"
            
            data = json.loads(json_input)
            
            # Handle both single object and array formats
            if not isinstance(data, list):
                data = [data]
            
            # Process all items
            results_83 = []
            results_90 = []
            
            for item in data:
                # Parse input data
                date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
                
                # Color mapping
                color_mapping = {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}
                if isinstance(item['cor'], str):
                    cor_str = item['cor'].lower()
                else:
                    cor_str = color_mapping.get(item['cor'], 'incolor')
                
                # Handle different field name formats for threshold
                boosting_val = item.get('pot_boost', item.get('ext_boosting', 3.0))
                
                # Create input features (with autoclave)
                input_data = {
                    'boosting': boosting_val,
                    'espessura': item['espessura'],
                    'extracao_forno': item['extracao_forno'],
                    'porcentagem_caco': item['porcentagem_caco'],
                    'cor': cor_str,
                    'prod_e': item.get('Prod_E', item.get('prod_e', 1)),
                    'prod_l': item.get('Prod_L', item.get('prod_l', 1)),
                    'autoclave': item.get('autoclave', 1),
                    'week_day': date_obj.weekday(),
                    'month': date_obj.month,
                    'quarter': (date_obj.month - 1) // 3 + 1,
                    'is_weekend': int(date_obj.weekday() >= 5),
                    'week_of_year': date_obj.isocalendar()[1]
                }
                
                # Convert to DataFrame
                input_df = pd.DataFrame([input_data])
                
                # Preprocess
                X_processed = self.threshold_preprocessor.transform(input_df)
                
                # Make predictions with error handling
                try:
                    prob_83_raw = self.threshold_model_83.predict_proba(X_processed)
                    prob_83 = prob_83_raw[0][1] if len(prob_83_raw[0]) > 1 else prob_83_raw[0][0]
                    # Ensure probability is between 0 and 1
                    prob_83 = max(0.0, min(1.0, float(prob_83)))
                except Exception as e:
                    print(f"Error with threshold_83 prediction: {e}")
                    prob_83 = 0.0
                
                pred_83 = int(prob_83 > 0.5)
                
                try:
                    prob_90_raw = self.threshold_model_90.predict_proba(X_processed)
                    prob_90 = prob_90_raw[0][1] if len(prob_90_raw[0]) > 1 else prob_90_raw[0][0]
                    # Ensure probability is between 0 and 1
                    prob_90 = max(0.0, min(1.0, float(prob_90)))
                except Exception as e:
                    print(f"Error with threshold_90 prediction: {e}")
                    prob_90 = 0.0
                
                pred_90 = int(prob_90 > 0.5)
                
                # Add to results
                results_83.append({
                    "datetime": item['data'],
                    "probabilidade_de_estouro": round(prob_83, 4),
                    "estouro_previsto": pred_83
                })
                
                results_90.append({
                    "datetime": item['data'],
                    "probabilidade_de_estouro": round(prob_90, 4),
                    "estouro_previsto": pred_90
                })
            
            # Format response
            result = {
                "predictions": {
                    "prediction_1": results_83,
                    "prediction_2": results_90
                }
            }
            
            return json.dumps(result, indent=2)
            
        except json.JSONDecodeError:
            return "Error: Invalid JSON format"
        except Exception as e:
            return f"Error: {str(e)}"
    
    def predict_energy_rf(self, json_input):
        """Predict energy using Random Forest"""
        try:
            if not self.models_loaded or not self.rf_model:
                return "Error: Random Forest model not available"
            
            data = json.loads(json_input)
            if not isinstance(data, list):
                data = [data]
            
            results = []
            
            for item in data:
                # Parse input
                date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
                
                # Handle different field name formats (boosting vs ext_boosting)
                if 'boosting' in item:
                    boosting_val = float(str(item['boosting']).replace(',', '.'))
                elif 'ext_boosting' in item:
                    boosting_val = float(str(item['ext_boosting']).replace(',', '.'))
                else:
                    boosting_val = 0.0
                
                # Handle extracao_forno field
                if 'extracao_forno' in item:
                    extracao_val = float(str(item['extracao_forno']).replace(',', '.'))
                else:
                    extracao_val = 800.0
                
                # Create features
                input_data = {
                    'boosting': boosting_val,
                    'espessura': item['espessura'],
                    'extracao_forno': extracao_val,
                    'porcentagem_caco': item['porcentagem_caco'],
                    'cor': str(item['cor']).lower() if isinstance(item['cor'], str) else {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}.get(item['cor'], 'incolor'),
                    'prod_e': item.get('prod_e', item.get('Prod_E', 1)),
                    'prod_l': item.get('prod_l', item.get('Prod_L', 1)),
                    'autoclave': item.get('autoclave', 1),
                    'week_day': date_obj.weekday(),
                    'month': date_obj.month,
                    'quarter': (date_obj.month - 1) // 3 + 1,
                    'is_weekend': int(date_obj.weekday() >= 5),
                    'week_of_year': date_obj.isocalendar()[1],
                    'day_of_month': date_obj.day,
                    'day_of_year': date_obj.timetuple().tm_yday
                }
                
                # Predict
                input_df = pd.DataFrame([input_data])
                X_processed = self.rf_preprocessor.transform(input_df)
                prediction = self.rf_model.predict(X_processed)[0]
                
                results.append({
                    "data": date_obj.strftime('%d-%m-%Y'),
                    "predictions": float(prediction)
                })
            
            return json.dumps(results, indent=2)
            
        except json.JSONDecodeError:
            return "Error: Invalid JSON format"
        except Exception as e:
            return f"Error: {str(e)}"
    
    def predict_energy_xgb(self, json_input):
        """Predict energy using XGBoost"""
        try:
            if not self.models_loaded or not self.xgb_model:
                return "Error: XGBoost model not available"
            
            data = json.loads(json_input)
            if not isinstance(data, list):
                data = [data]
            
            results = []
            
            for item in data:
                # Parse input
                date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
                
                # Handle different field name formats (boosting vs ext_boosting)
                if 'boosting' in item:
                    boosting_val = float(str(item['boosting']).replace(',', '.'))
                elif 'ext_boosting' in item:
                    boosting_val = float(str(item['ext_boosting']).replace(',', '.'))
                else:
                    boosting_val = 0.0
                
                # Handle extracao_forno field
                if 'extracao_forno' in item:
                    extracao_val = float(str(item['extracao_forno']).replace(',', '.'))
                else:
                    extracao_val = 800.0
                
                # Create features (match training: numerical + categorical + boolean, NO day_of_month/day_of_year)
                input_data = {
                    'boosting': boosting_val,
                    'espessura': item['espessura'],
                    'extracao_forno': extracao_val,
                    'porcentagem_caco': item['porcentagem_caco'],
                    'cor': str(item['cor']).lower() if isinstance(item['cor'], str) else {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}.get(item['cor'], 'incolor'),
                    'week_day': date_obj.weekday(),
                    'month': date_obj.month,
                    'quarter': (date_obj.month - 1) // 3 + 1,
                    'week_of_year': date_obj.isocalendar()[1],
                    'prod_e': item.get('prod_e', 1),
                    'prod_l': item.get('prod_l', 1),
                    'is_weekend': int(date_obj.weekday() >= 5),
                    'autoclave': item.get('autoclave', 1)
                }
                
                # Encode categorical features
                input_df = pd.DataFrame([input_data])
                
                for col in input_df.columns:
                    if col in self.xgb_encoders:
                        try:
                            input_df[col] = self.xgb_encoders[col].transform(input_df[col].astype(str))
                        except ValueError:
                            # Handle unknown categories
                            input_df[col] = 0
                
                # Predict
                prediction = self.xgb_model.predict(input_df.values)[0]
                
                results.append({
                    "data": date_obj.strftime('%d-%m-%Y'),
                    "predictions": float(prediction)
                })
            
            return json.dumps(results, indent=2)
            
        except json.JSONDecodeError:
            return "Error: Invalid JSON format"
        except Exception as e:
            return f"Error: {str(e)}"

# Initialize predictor
predictor = EnergyMLPredictor()

def make_prediction(model_choice, json_input):
    """Make prediction based on model choice"""
    if not predictor.models_loaded:
        load_msg = predictor.load_models()
        if "Error" in load_msg:
            return load_msg
    
    if model_choice == "Threshold Detection":
        return predictor.predict_threshold(json_input)
    elif model_choice == "Energy Prediction (Random Forest)":
        return predictor.predict_energy_rf(json_input)
    elif model_choice == "Energy Prediction (XGBoost)":
        return predictor.predict_energy_xgb(json_input)
    else:
        return "Error: Please select a model"

# Default examples
threshold_example = """{
  "data": "2023-01-01",
  "cor": 0,
  "espessura": 8.0,
  "ext_boosting": 65.0,
  "extracao_forno": 851.1,
  "porcentagem_caco": 15.0,
  "pot_boost": 3.0,
  "Prod_E": 1,
  "Prod_L": 1
}"""

energy_example = """[
  {
    "data": "2023-01-01",
    "boosting": "0,0",
    "cor": "incolor",
    "espessura": 10,
    "extracao_forno": "651,6",
    "porcentagem_caco": 10.0,
    "prod_e": 1,
    "prod_l": 1,
    "autoclave": 1
  }
]"""

# Test data from holdout period (last 2 months used in training)
week_test_data = """[
  {"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
  {"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
  {"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}
]"""

month_test_data = """[
  {"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
  {"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
  {"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-26", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7549, "extracao_forno": 703.33718364331, "porcentagem_caco": 9.96677008271902, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-27", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8022, "extracao_forno": 698.519152270116, "porcentagem_caco": 10.0355158154479, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-04-28", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.802291106822, "porcentagem_caco": 10.0171149610168, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-04-29", "cor": 0, "espessura": 8.0, "ext_boosting": 1.803, "extracao_forno": 702.213883737496, "porcentagem_caco": 9.98271347568585, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
  {"data": "2025-04-30", "cor": 0, "espessura": 8.0, "ext_boosting": 1.801, "extracao_forno": 701.164091438783, "porcentagem_caco": 9.99765972843181, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
  {"data": "2025-05-01", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7999, "extracao_forno": 701.096395285213, "porcentagem_caco": 9.99862507800837, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
  {"data": "2025-05-02", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8016, "extracao_forno": 701.004721690124, "porcentagem_caco": 9.99993264396119, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
  {"data": "2025-05-03", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.505291072901, "porcentagem_caco": 10.021368086077, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-05-04", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8036, "extracao_forno": 700.073447985429, "porcentagem_caco": 10.0132350686523, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-05-05", "cor": 0, "espessura": 8.0, "ext_boosting": 0.689, "extracao_forno": 700.60585295748, "porcentagem_caco": 10.0056258028798, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-06", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.123418185867, "porcentagem_caco": 10.026841924692, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-07", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.086556585488, "porcentagem_caco": 10.0273706223712, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-08", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.120389195209, "porcentagem_caco": 10.0412480547676, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-09", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.228099576186, "porcentagem_caco": 9.9680434627127, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-05-10", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.37935572186, "porcentagem_caco": 9.96588147179382, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
  {"data": "2025-05-11", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.563378916139, "porcentagem_caco": 10.0205359675357, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-12", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.733542903546, "porcentagem_caco": 10.0324366436888, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-13", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.509702244859, "porcentagem_caco": 10.0213048904162, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-14", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 701.657766576732, "porcentagem_caco": 9.99062553558067, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-15", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 674.645706945424, "porcentagem_caco": 10.0052515424159, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-16", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 653.148421891636, "porcentagem_caco": 9.95179622600148, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-17", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 611.090907286899, "porcentagem_caco": 9.98214819965588, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
  {"data": "2025-05-18", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 599.399563235682, "porcentagem_caco": 10.0100173040013, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}
]"""

# Create Gradio interface
with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
    
    gr.Markdown("# Energy ML Prediction System")
    gr.Markdown("Cloud deployment with embedded models")
    
    with gr.Row():
        with gr.Column():
            model_choice = gr.Radio(
                choices=[
                    "Threshold Detection",
                    "Energy Prediction (Random Forest)",
                    "Energy Prediction (XGBoost)"
                ],
                label="Select Model",
                value="Threshold Detection"
            )
            
            # Quick test data options
            gr.Markdown("### Quick Test Options")
            with gr.Row():
                load_week_btn = gr.Button("Load Week Test Data", size="sm")
                load_month_btn = gr.Button("Load Month Test Data", size="sm")
                clear_btn = gr.Button("Clear", size="sm")
            
            json_input = gr.Textbox(
                label="JSON Input",
                placeholder="Enter JSON data here...",
                lines=15,
                value=threshold_example
            )
            
            predict_btn = gr.Button("Make Prediction", variant="primary")
            
        with gr.Column():
            output = gr.Textbox(
                label="Prediction Result",
                lines=20,
                interactive=False
            )
    
    def update_example(choice):
        if "Threshold" in choice:
            return threshold_example
        else:
            return energy_example
    
    def load_week_data():
        return week_test_data
        
    def load_month_data():
        return month_test_data
        
    def clear_data():
        return ""
    
    model_choice.change(update_example, inputs=[model_choice], outputs=[json_input])
    load_week_btn.click(fn=load_week_data, outputs=json_input)
    load_month_btn.click(fn=load_month_data, outputs=json_input)  
    clear_btn.click(fn=clear_data, outputs=json_input)
    predict_btn.click(make_prediction, inputs=[model_choice, json_input], outputs=[output])
    
    with gr.Accordion("Model Information", open=False):
        gr.Markdown("""
        ## Available Models
        - **Threshold Detection**: Predict probability of exceeding 8.3 and 9.0 MWh
        - **Random Forest**: Energy consumption prediction (R² = 0.72)
        - **XGBoost**: Energy consumption prediction (R² = 0.56, winner model)
        
        ## Input Formats
        See examples that change when you select different models.
        """)

if __name__ == "__main__":
    app.launch(
        auth=("admin", "energy123"),
        share=True,
        ssr_mode=False
    )