import gradio as gr import json import pickle import pandas as pd import numpy as np from datetime import datetime import os class EnergyMLPredictor: def __init__(self): self.rf_model = None self.rf_preprocessor = None self.xgb_model = None self.xgb_encoders = None self.threshold_model_83 = None self.threshold_model_90 = None self.threshold_preprocessor = None self.models_loaded = False def load_models(self): """Load all models from pickle files""" try: # Load Random Forest Energy Model if os.path.exists('rf_energy_model.pkl'): with open('rf_energy_model.pkl', 'rb') as f: rf_data = pickle.load(f) self.rf_model = rf_data['model'] self.rf_preprocessor = rf_data['preprocessor'] # Load XGBoost Energy Model if os.path.exists('xgboost_energy_model.pkl'): with open('xgboost_energy_model.pkl', 'rb') as f: xgb_data = pickle.load(f) self.xgb_model = xgb_data['model'] self.xgb_encoders = xgb_data['label_encoders'] # Load Threshold Models if os.path.exists('threshold_model_83_autoclave.pkl'): with open('threshold_model_83_autoclave.pkl', 'rb') as f: threshold_data = pickle.load(f) self.threshold_model_83 = threshold_data['model'] self.threshold_preprocessor = threshold_data['preprocessor'] if os.path.exists('threshold_model_90_autoclave.pkl'): with open('threshold_model_90_autoclave.pkl', 'rb') as f: threshold_data = pickle.load(f) self.threshold_model_90 = threshold_data['model'] self.models_loaded = True return "Models loaded successfully" except Exception as e: return f"Error loading models: {str(e)}" def predict_threshold(self, json_input): """Predict threshold exceedance""" try: if not self.models_loaded: return "Error: Models not loaded" if not self.threshold_model_83 or not self.threshold_model_90: return "Error: Threshold models not available" data = json.loads(json_input) # Handle both single object and array formats if not isinstance(data, list): data = [data] # Process all items results_83 = [] results_90 = [] for item in data: # Parse input data date_obj = datetime.strptime(item['data'], '%Y-%m-%d') # Color mapping color_mapping = {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'} if isinstance(item['cor'], str): cor_str = item['cor'].lower() else: cor_str = color_mapping.get(item['cor'], 'incolor') # Handle different field name formats for threshold boosting_val = item.get('pot_boost', item.get('ext_boosting', 3.0)) # Create input features (with autoclave) input_data = { 'boosting': boosting_val, 'espessura': item['espessura'], 'extracao_forno': item['extracao_forno'], 'porcentagem_caco': item['porcentagem_caco'], 'cor': cor_str, 'prod_e': item.get('Prod_E', item.get('prod_e', 1)), 'prod_l': item.get('Prod_L', item.get('prod_l', 1)), 'autoclave': item.get('autoclave', 1), 'week_day': date_obj.weekday(), 'month': date_obj.month, 'quarter': (date_obj.month - 1) // 3 + 1, 'is_weekend': int(date_obj.weekday() >= 5), 'week_of_year': date_obj.isocalendar()[1] } # Convert to DataFrame input_df = pd.DataFrame([input_data]) # Preprocess X_processed = self.threshold_preprocessor.transform(input_df) # Make predictions with error handling try: prob_83_raw = self.threshold_model_83.predict_proba(X_processed) prob_83 = prob_83_raw[0][1] if len(prob_83_raw[0]) > 1 else prob_83_raw[0][0] # Ensure probability is between 0 and 1 prob_83 = max(0.0, min(1.0, float(prob_83))) except Exception as e: print(f"Error with threshold_83 prediction: {e}") prob_83 = 0.0 pred_83 = int(prob_83 > 0.5) try: prob_90_raw = self.threshold_model_90.predict_proba(X_processed) prob_90 = prob_90_raw[0][1] if len(prob_90_raw[0]) > 1 else prob_90_raw[0][0] # Ensure probability is between 0 and 1 prob_90 = max(0.0, min(1.0, float(prob_90))) except Exception as e: print(f"Error with threshold_90 prediction: {e}") prob_90 = 0.0 pred_90 = int(prob_90 > 0.5) # Add to results results_83.append({ "datetime": item['data'], "probabilidade_de_estouro": round(prob_83, 4), "estouro_previsto": pred_83 }) results_90.append({ "datetime": item['data'], "probabilidade_de_estouro": round(prob_90, 4), "estouro_previsto": pred_90 }) # Format response result = { "predictions": { "prediction_1": results_83, "prediction_2": results_90 } } return json.dumps(result, indent=2) except json.JSONDecodeError: return "Error: Invalid JSON format" except Exception as e: return f"Error: {str(e)}" def predict_energy_rf(self, json_input): """Predict energy using Random Forest""" try: if not self.models_loaded or not self.rf_model: return "Error: Random Forest model not available" data = json.loads(json_input) if not isinstance(data, list): data = [data] results = [] for item in data: # Parse input date_obj = datetime.strptime(item['data'], '%Y-%m-%d') # Handle different field name formats (boosting vs ext_boosting) if 'boosting' in item: boosting_val = float(str(item['boosting']).replace(',', '.')) elif 'ext_boosting' in item: boosting_val = float(str(item['ext_boosting']).replace(',', '.')) else: boosting_val = 0.0 # Handle extracao_forno field if 'extracao_forno' in item: extracao_val = float(str(item['extracao_forno']).replace(',', '.')) else: extracao_val = 800.0 # Create features input_data = { 'boosting': boosting_val, 'espessura': item['espessura'], 'extracao_forno': extracao_val, 'porcentagem_caco': item['porcentagem_caco'], 'cor': str(item['cor']).lower() if isinstance(item['cor'], str) else {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}.get(item['cor'], 'incolor'), 'prod_e': item.get('prod_e', item.get('Prod_E', 1)), 'prod_l': item.get('prod_l', item.get('Prod_L', 1)), 'autoclave': item.get('autoclave', 1), 'week_day': date_obj.weekday(), 'month': date_obj.month, 'quarter': (date_obj.month - 1) // 3 + 1, 'is_weekend': int(date_obj.weekday() >= 5), 'week_of_year': date_obj.isocalendar()[1], 'day_of_month': date_obj.day, 'day_of_year': date_obj.timetuple().tm_yday } # Predict input_df = pd.DataFrame([input_data]) X_processed = self.rf_preprocessor.transform(input_df) prediction = self.rf_model.predict(X_processed)[0] results.append({ "data": date_obj.strftime('%d-%m-%Y'), "predictions": float(prediction) }) return json.dumps(results, indent=2) except json.JSONDecodeError: return "Error: Invalid JSON format" except Exception as e: return f"Error: {str(e)}" def predict_energy_xgb(self, json_input): """Predict energy using XGBoost""" try: if not self.models_loaded or not self.xgb_model: return "Error: XGBoost model not available" data = json.loads(json_input) if not isinstance(data, list): data = [data] results = [] for item in data: # Parse input date_obj = datetime.strptime(item['data'], '%Y-%m-%d') # Handle different field name formats (boosting vs ext_boosting) if 'boosting' in item: boosting_val = float(str(item['boosting']).replace(',', '.')) elif 'ext_boosting' in item: boosting_val = float(str(item['ext_boosting']).replace(',', '.')) else: boosting_val = 0.0 # Handle extracao_forno field if 'extracao_forno' in item: extracao_val = float(str(item['extracao_forno']).replace(',', '.')) else: extracao_val = 800.0 # Create features (match training: numerical + categorical + boolean, NO day_of_month/day_of_year) input_data = { 'boosting': boosting_val, 'espessura': item['espessura'], 'extracao_forno': extracao_val, 'porcentagem_caco': item['porcentagem_caco'], 'cor': str(item['cor']).lower() if isinstance(item['cor'], str) else {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}.get(item['cor'], 'incolor'), 'week_day': date_obj.weekday(), 'month': date_obj.month, 'quarter': (date_obj.month - 1) // 3 + 1, 'week_of_year': date_obj.isocalendar()[1], 'prod_e': item.get('prod_e', 1), 'prod_l': item.get('prod_l', 1), 'is_weekend': int(date_obj.weekday() >= 5), 'autoclave': item.get('autoclave', 1) } # Encode categorical features input_df = pd.DataFrame([input_data]) for col in input_df.columns: if col in self.xgb_encoders: try: input_df[col] = self.xgb_encoders[col].transform(input_df[col].astype(str)) except ValueError: # Handle unknown categories input_df[col] = 0 # Predict prediction = self.xgb_model.predict(input_df.values)[0] results.append({ "data": date_obj.strftime('%d-%m-%Y'), "predictions": float(prediction) }) return json.dumps(results, indent=2) except json.JSONDecodeError: return "Error: Invalid JSON format" except Exception as e: return f"Error: {str(e)}" # Initialize predictor predictor = EnergyMLPredictor() def make_prediction(model_choice, json_input): """Make prediction based on model choice""" if not predictor.models_loaded: load_msg = predictor.load_models() if "Error" in load_msg: return load_msg if model_choice == "Threshold Detection": return predictor.predict_threshold(json_input) elif model_choice == "Energy Prediction (Random Forest)": return predictor.predict_energy_rf(json_input) elif model_choice == "Energy Prediction (XGBoost)": return predictor.predict_energy_xgb(json_input) else: return "Error: Please select a model" # Default examples threshold_example = """{ "data": "2023-01-01", "cor": 0, "espessura": 8.0, "ext_boosting": 65.0, "extracao_forno": 851.1, "porcentagem_caco": 15.0, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 1 }""" energy_example = """[ { "data": "2023-01-01", "boosting": "0,0", "cor": "incolor", "espessura": 10, "extracao_forno": "651,6", "porcentagem_caco": 10.0, "prod_e": 1, "prod_l": 1, "autoclave": 1 } ]""" # Test data from holdout period (last 2 months used in training) week_test_data = """[ {"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0}, {"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1}, {"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1}, {"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1} ]""" month_test_data = """[ {"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0}, {"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1}, {"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1}, {"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-26", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7549, "extracao_forno": 703.33718364331, "porcentagem_caco": 9.96677008271902, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-27", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8022, "extracao_forno": 698.519152270116, "porcentagem_caco": 10.0355158154479, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-04-28", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.802291106822, "porcentagem_caco": 10.0171149610168, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1}, {"data": "2025-04-29", "cor": 0, "espessura": 8.0, "ext_boosting": 1.803, "extracao_forno": 702.213883737496, "porcentagem_caco": 9.98271347568585, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0}, {"data": "2025-04-30", "cor": 0, "espessura": 8.0, "ext_boosting": 1.801, "extracao_forno": 701.164091438783, "porcentagem_caco": 9.99765972843181, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0}, {"data": "2025-05-01", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7999, "extracao_forno": 701.096395285213, "porcentagem_caco": 9.99862507800837, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0}, {"data": "2025-05-02", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8016, "extracao_forno": 701.004721690124, "porcentagem_caco": 9.99993264396119, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0}, {"data": "2025-05-03", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.505291072901, "porcentagem_caco": 10.021368086077, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-05-04", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8036, "extracao_forno": 700.073447985429, "porcentagem_caco": 10.0132350686523, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-05-05", "cor": 0, "espessura": 8.0, "ext_boosting": 0.689, "extracao_forno": 700.60585295748, "porcentagem_caco": 10.0056258028798, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-06", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.123418185867, "porcentagem_caco": 10.026841924692, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-07", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.086556585488, "porcentagem_caco": 10.0273706223712, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-08", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.120389195209, "porcentagem_caco": 10.0412480547676, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-09", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.228099576186, "porcentagem_caco": 9.9680434627127, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-05-10", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.37935572186, "porcentagem_caco": 9.96588147179382, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0}, {"data": "2025-05-11", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.563378916139, "porcentagem_caco": 10.0205359675357, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-12", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.733542903546, "porcentagem_caco": 10.0324366436888, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-13", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.509702244859, "porcentagem_caco": 10.0213048904162, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-14", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 701.657766576732, "porcentagem_caco": 9.99062553558067, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-15", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 674.645706945424, "porcentagem_caco": 10.0052515424159, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-16", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 653.148421891636, "porcentagem_caco": 9.95179622600148, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-17", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 611.090907286899, "porcentagem_caco": 9.98214819965588, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}, {"data": "2025-05-18", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 599.399563235682, "porcentagem_caco": 10.0100173040013, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1} ]""" # Create Gradio interface with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app: gr.Markdown("# Energy ML Prediction System") gr.Markdown("Cloud deployment with embedded models") with gr.Row(): with gr.Column(): model_choice = gr.Radio( choices=[ "Threshold Detection", "Energy Prediction (Random Forest)", "Energy Prediction (XGBoost)" ], label="Select Model", value="Threshold Detection" ) # Quick test data options gr.Markdown("### Quick Test Options") with gr.Row(): load_week_btn = gr.Button("Load Week Test Data", size="sm") load_month_btn = gr.Button("Load Month Test Data", size="sm") clear_btn = gr.Button("Clear", size="sm") json_input = gr.Textbox( label="JSON Input", placeholder="Enter JSON data here...", lines=15, value=threshold_example ) predict_btn = gr.Button("Make Prediction", variant="primary") with gr.Column(): output = gr.Textbox( label="Prediction Result", lines=20, interactive=False ) def update_example(choice): if "Threshold" in choice: return threshold_example else: return energy_example def load_week_data(): return week_test_data def load_month_data(): return month_test_data def clear_data(): return "" model_choice.change(update_example, inputs=[model_choice], outputs=[json_input]) load_week_btn.click(fn=load_week_data, outputs=json_input) load_month_btn.click(fn=load_month_data, outputs=json_input) clear_btn.click(fn=clear_data, outputs=json_input) predict_btn.click(make_prediction, inputs=[model_choice, json_input], outputs=[output]) with gr.Accordion("Model Information", open=False): gr.Markdown(""" ## Available Models - **Threshold Detection**: Predict probability of exceeding 8.3 and 9.0 MWh - **Random Forest**: Energy consumption prediction (R² = 0.72) - **XGBoost**: Energy consumption prediction (R² = 0.56, winner model) ## Input Formats See examples that change when you select different models. """) if __name__ == "__main__": app.launch( auth=("admin", "energy123"), share=True, ssr_mode=False )