import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import MAIN_PROMPT # Load OpenAI API Key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=1024, temperature=0.7, top_p=0.95): """ Calls OpenAI Chat API to generate responses. - history: [(user_text, assistant_text), ...] - user_message: latest message from user """ messages = [{"role": "system", "content": MAIN_PROMPT}] # Add conversation history for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) messages.append({"role": "user", "content": user_message}) # OpenAI API Call completion = client.chat.completions.create( model=model, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) response = completion.choices[0].message.content # Ensure AI is conversational and interactive if any(keyword in user_message.lower() for keyword in ["solve", "explain", "why", "reasoning"]): response = "Great thinking! Now, explain your reasoning step by step. What patterns or relationships do you notice? Let's walk through it together.\n\n" + response # Provide guidance instead of full solutions immediately if any(keyword in user_message.lower() for keyword in ["hint", "stuck", "help"]): response = "Here's a hint: What key properties or relationships can help you solve this? Try breaking it down further.\n\n" + response # Encourage problem posing at the end of each module if "pose a problem" in user_message.lower(): response += "\n\nNow that you've explored this concept, can you create your own problem? How would you challenge your students with a similar situation?" # Ask about Common Core practice standards and creativity-directed practices at the end if "summary" in user_message.lower(): response += "\n\nReflection time! Which Common Core practice standards did we apply? How did creativity shape your approach to solving this problem?" # Step-by-step solutions instead of immediate answers if any(keyword in user_message.lower() for keyword in ["solution", "answer"]): response = "Let's take this step by step. What information do we have? How can we use it to set up an equation or method?\n\n" + response # Provide illustrations where relevant if any(keyword in user_message.lower() for keyword in ["visualize", "graph", "draw", "picture", "illustration"]): response += "\n\nLet me generate an illustration to help you visualize this concept. It will be an approximation to support your understanding." return response def respond(user_message, history): """ Handles user input and chatbot responses. """ if not user_message: return "", history assistant_reply = gpt_call(history, user_message) history.append((user_message, assistant_reply)) return "", history ############################## # Gradio Blocks UI ############################## with gr.Blocks() as demo: gr.Markdown("## AI-Guided Math PD Chatbot") chatbot = gr.Chatbot( value=[("", INITIAL_PROMPT)], height=600 ) state_history = gr.State([("", INITIAL_PROMPT)]) user_input = gr.Textbox( placeholder="Type your message here...", label="Your Input" ) user_input.submit( respond, inputs=[user_input, state_history], outputs=[user_input, chatbot] ).then( fn=lambda _, h: h, inputs=[user_input, chatbot], outputs=[state_history] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)