|
import os |
|
import gradio as gr |
|
from dotenv import load_dotenv |
|
from openai import OpenAI |
|
from prompts.initial_prompt import INITIAL_PROMPT |
|
from prompts.main_prompt import TASK_PROMPT |
|
|
|
|
|
|
|
if os.path.exists(".env"): |
|
load_dotenv(".env") |
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
client = OpenAI(api_key=OPENAI_API_KEY) |
|
|
|
|
|
def gpt_call(history, user_message, |
|
model="gpt-4o-mini", |
|
max_tokens=512, |
|
temperature=0.7, |
|
top_p=0.95): |
|
""" |
|
Calls OpenAI's ChatCompletion API to generate responses. |
|
- history: [(user_text, assistant_text), ...] |
|
- user_message: User's latest input |
|
""" |
|
|
|
messages = [{"role": "system", "content": TASK_PROMPT}] |
|
|
|
|
|
for user_text, assistant_text in history: |
|
if user_text: |
|
messages.append({"role": "user", "content": user_text}) |
|
if assistant_text: |
|
messages.append({"role": "assistant", "content": assistant_text}) |
|
|
|
|
|
messages.append({"role": "user", "content": user_message}) |
|
|
|
|
|
if "bar model" in user_message.lower(): |
|
return "Great! You've started using a bar model. Can you explain how you divided it? What does each section represent?" |
|
|
|
elif "double number line" in user_message.lower(): |
|
return "Nice! How does your number line show the relationship between time and distance? Did you mark the correct intervals?" |
|
|
|
elif "ratio table" in user_message.lower(): |
|
return "Good choice! Before I check, how did you determine the ratio for 1 hour?" |
|
|
|
elif "graph" in user_message.lower(): |
|
return "Graphs are powerful! What key points did you plot, and why?" |
|
|
|
else: |
|
|
|
completion = client.chat.completions.create( |
|
model=model, |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
return completion.choices[0].message.content |
|
|
|
|
|
def respond(user_message, history): |
|
""" |
|
Handles user input and chatbot response in Gradio. |
|
- user_message: The latest input from the user. |
|
- history: A list of (user, assistant) message pairs. |
|
""" |
|
if not user_message: |
|
return "", history |
|
|
|
|
|
assistant_reply = gpt_call(history, user_message) |
|
|
|
|
|
history.append((user_message, assistant_reply)) |
|
|
|
|
|
return "", history |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## AI-Guided Teacher PD Chatbot") |
|
|
|
|
|
chatbot = gr.Chatbot( |
|
value=[("", INITIAL_PROMPT)], |
|
height=500 |
|
) |
|
|
|
|
|
state_history = gr.State([("", INITIAL_PROMPT)]) |
|
|
|
|
|
user_input = gr.Textbox( |
|
placeholder="Type your response here...", |
|
label="Your Input" |
|
) |
|
|
|
|
|
user_input.submit( |
|
respond, |
|
inputs=[user_input, state_history], |
|
outputs=[user_input, chatbot] |
|
).then( |
|
fn=lambda _, h: h, |
|
inputs=[user_input, chatbot], |
|
outputs=[state_history] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |
|
|