Delete indexer.py
Browse files- indexer.py +0 -145
indexer.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
import logging
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from PyPDF2 import PdfReader
|
6 |
-
from langchain.docstore.document import Document
|
7 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
-
from langchain_community.embeddings import BedrockEmbeddings
|
9 |
-
from langchain_chroma import Chroma
|
10 |
-
from botocore.exceptions import ClientError
|
11 |
-
|
12 |
-
# Set up logging
|
13 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
def load_environment():
|
17 |
-
"""Load environment variables from .env file or system environment."""
|
18 |
-
load_dotenv()
|
19 |
-
required_vars = ['AWS_ACCESS_KEY_ID', 'AWS_SECRET_ACCESS_KEY', 'AWS_REGION']
|
20 |
-
for var in required_vars:
|
21 |
-
if not os.getenv(var):
|
22 |
-
logger.error(f"Missing environment variable: {var}")
|
23 |
-
raise ValueError(f"Missing environment variable: {var}")
|
24 |
-
logger.info("Environment variables loaded successfully")
|
25 |
-
|
26 |
-
def load_uploaded_pdfs(uploaded_files):
|
27 |
-
"""Load and extract text from uploaded PDF files."""
|
28 |
-
documents = []
|
29 |
-
pdf_count = 0
|
30 |
-
try:
|
31 |
-
for file_path in uploaded_files:
|
32 |
-
pdf_count += 1
|
33 |
-
file_name = os.path.basename(file_path)
|
34 |
-
logger.info(f"Loading uploaded PDF: {file_name}")
|
35 |
-
# Open the file from the provided path
|
36 |
-
with open(file_path, 'rb') as pdf_file:
|
37 |
-
pdf_reader = PdfReader(pdf_file)
|
38 |
-
# Extract text from each page
|
39 |
-
text = ""
|
40 |
-
for page_num, page in enumerate(pdf_reader.pages):
|
41 |
-
page_text = page.extract_text() or ""
|
42 |
-
text += page_text
|
43 |
-
# Create a LangChain Document for each page
|
44 |
-
documents.append(Document(
|
45 |
-
page_content=page_text,
|
46 |
-
metadata={"source": file_name, "page": page_num + 1}
|
47 |
-
))
|
48 |
-
if not text.strip():
|
49 |
-
logger.warning(f"No text extracted from {file_name}")
|
50 |
-
if not documents:
|
51 |
-
logger.warning("No PDF files provided or no text extracted")
|
52 |
-
else:
|
53 |
-
logger.info(f"Loaded {len(documents)} pages from {pdf_count} PDFs")
|
54 |
-
return documents, pdf_count
|
55 |
-
except Exception as e:
|
56 |
-
logger.error(f"Error loading PDFs: {str(e)}")
|
57 |
-
raise
|
58 |
-
|
59 |
-
def split_documents(documents):
|
60 |
-
"""Split documents into chunks for embedding."""
|
61 |
-
try:
|
62 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
63 |
-
chunk_size=1000,
|
64 |
-
chunk_overlap=200,
|
65 |
-
length_function=len
|
66 |
-
)
|
67 |
-
chunks = text_splitter.split_documents(documents)
|
68 |
-
logger.info(f"Split documents into {len(chunks)} chunks")
|
69 |
-
return chunks
|
70 |
-
except Exception as e:
|
71 |
-
logger.error(f"Error splitting documents: {str(e)}")
|
72 |
-
raise
|
73 |
-
|
74 |
-
def initialize_embeddings():
|
75 |
-
"""Initialize Amazon Bedrock embeddings."""
|
76 |
-
try:
|
77 |
-
embeddings = BedrockEmbeddings(
|
78 |
-
model_id="amazon.titan-embed-text-v1",
|
79 |
-
region_name=os.getenv("AWS_REGION")
|
80 |
-
)
|
81 |
-
logger.info("Initialized Bedrock embeddings")
|
82 |
-
return embeddings
|
83 |
-
except ClientError as e:
|
84 |
-
logger.error(f"Error initializing Bedrock embeddings: {str(e)}")
|
85 |
-
raise
|
86 |
-
|
87 |
-
def store_in_chroma(chunks, embeddings, db_directory="./chroma_db", collection_name="pdf_rag"):
|
88 |
-
"""Store document chunks and embeddings in Chroma vector database."""
|
89 |
-
try:
|
90 |
-
# Clear existing Chroma database if it exists
|
91 |
-
if os.path.exists(db_directory):
|
92 |
-
import shutil
|
93 |
-
shutil.rmtree(db_directory)
|
94 |
-
logger.info(f"Cleared existing Chroma database at {db_directory}")
|
95 |
-
os.makedirs(db_directory, exist_ok=True)
|
96 |
-
|
97 |
-
vector_store = Chroma.from_documents(
|
98 |
-
documents=chunks,
|
99 |
-
embedding=embeddings,
|
100 |
-
collection_name=collection_name,
|
101 |
-
persist_directory=db_directory
|
102 |
-
)
|
103 |
-
logger.info(f"Stored {len(chunks)} chunks in Chroma vector database at {db_directory}")
|
104 |
-
return vector_store
|
105 |
-
except Exception as e:
|
106 |
-
logger.error(f"Error storing in Chroma: {str(e)}")
|
107 |
-
raise
|
108 |
-
|
109 |
-
def index_uploaded_pdfs(uploaded_files, db_directory="./chroma_db"):
|
110 |
-
"""Index uploaded PDF files and return vector store and summary."""
|
111 |
-
try:
|
112 |
-
# Load environment variables
|
113 |
-
load_environment()
|
114 |
-
|
115 |
-
# Load and process PDFs
|
116 |
-
documents, pdf_count = load_uploaded_pdfs(uploaded_files)
|
117 |
-
if not documents:
|
118 |
-
return None, {"pdf_count": 0, "page_count": 0, "chunk_count": 0, "db_location": db_directory}
|
119 |
-
|
120 |
-
# Split documents into chunks
|
121 |
-
chunks = split_documents(documents)
|
122 |
-
|
123 |
-
# Initialize embeddings
|
124 |
-
embeddings = initialize_embeddings()
|
125 |
-
|
126 |
-
# Store in Chroma
|
127 |
-
vector_store = store_in_chroma(chunks, embeddings, db_directory)
|
128 |
-
|
129 |
-
# Summary
|
130 |
-
summary = {
|
131 |
-
"pdf_count": pdf_count,
|
132 |
-
"page_count": len(documents),
|
133 |
-
"chunk_count": len(chunks),
|
134 |
-
"db_location": db_directory
|
135 |
-
}
|
136 |
-
logger.info("Indexing Summary:")
|
137 |
-
logger.info(f" Number of PDFs processed: {summary['pdf_count']}")
|
138 |
-
logger.info(f" Total pages loaded: {summary['page_count']}")
|
139 |
-
logger.info(f" Total chunks created: {summary['chunk_count']}")
|
140 |
-
logger.info(f" Chroma database location: {summary['db_location']}")
|
141 |
-
return vector_store, summary
|
142 |
-
|
143 |
-
except Exception as e:
|
144 |
-
logger.error(f"Indexing failed: {str(e)}")
|
145 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|