Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,252 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import boto3
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
4 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_aws import BedrockEmbeddings
|
6 |
+
# --- CHANGED: Import Qdrant instead of Chroma ---
|
7 |
+
from langchain_qdrant import Qdrant
|
8 |
+
# --- Optional: If you need direct Qdrant client interaction or for advanced setups ---
|
9 |
+
# from qdrant_client import QdrantClient, models
|
10 |
+
|
11 |
+
from langchain_aws import ChatBedrock
|
12 |
+
from langchain.prompts import ChatPromptTemplate
|
13 |
+
from langchain.schema import StrOutputParser
|
14 |
+
from langchain.schema.runnable import RunnablePassthrough
|
15 |
+
import os
|
16 |
+
from dotenv import load_dotenv # Import load_dotenv
|
17 |
+
|
18 |
+
# --- Load Environment Variables ---
|
19 |
+
load_dotenv() # This loads variables from .env file
|
20 |
+
|
21 |
+
# --- Streamlit UI Setup (MUST BE THE FIRST STREAMLIT COMMAND) ---
|
22 |
+
st.set_page_config(
|
23 |
+
page_title="Math Research Paper RAG Bot",
|
24 |
+
page_icon="📚",
|
25 |
+
layout="wide"
|
26 |
+
)
|
27 |
+
|
28 |
+
st.title("📚 Math Research Paper RAG Chatbot")
|
29 |
+
st.markdown(
|
30 |
+
"""
|
31 |
+
Upload a mathematical research paper (PDF) and ask questions about its content.
|
32 |
+
This bot uses Amazon Bedrock (Claude 3 Sonnet for reasoning, Titan Embeddings for vectors)
|
33 |
+
and **QdrantDB** for Retrieval-Augmented Generation.
|
34 |
+
|
35 |
+
**Note:** This application requires AWS credentials (`AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`)
|
36 |
+
and region (`AWS_REGION`) to be set up in a `.env` file or environment variables.
|
37 |
+
The Qdrant vector store is **in-memory** and will be reset on app restart.
|
38 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
+
# --- Configuration ---
|
42 |
+
# Set AWS region (adjust if needed, loaded from .env or env var)
|
43 |
+
AWS_REGION = os.getenv("AWS_REGION")
|
44 |
+
if not AWS_REGION:
|
45 |
+
st.error("AWS_REGION not found in environment variables or .env file. Please set it.")
|
46 |
+
st.stop()
|
47 |
+
|
48 |
+
# Bedrock model IDs
|
49 |
+
EMBEDDING_MODEL_ID = "amazon.titan-embed-text-v1"
|
50 |
+
LLM_MODEL_ID = "anthropic.claude-3-sonnet-20240229-v1:0"
|
51 |
+
|
52 |
+
# --- Qdrant Specific Configuration ---
|
53 |
+
QDRANT_COLLECTION_NAME = "math_research_papers_collection"
|
54 |
+
EMBEDDING_DIMENSION = 1536 # Titan Text Embeddings output 1536-dimensional vectors
|
55 |
+
|
56 |
+
# --- Initialize Bedrock Client (once) ---
|
57 |
+
@st.cache_resource
|
58 |
+
def get_bedrock_client():
|
59 |
+
"""Initializes and returns a boto3 Bedrock client.
|
60 |
+
Returns: Tuple (boto3_client, success_bool, error_message_str or None)
|
61 |
+
"""
|
62 |
+
try:
|
63 |
+
client = boto3.client(
|
64 |
+
service_name="bedrock-runtime",
|
65 |
+
region_name=AWS_REGION
|
66 |
+
)
|
67 |
+
return client, True, None # Success: client, True, no error message
|
68 |
+
except Exception as e:
|
69 |
+
return None, False, str(e) # Failure: None, False, error message
|
70 |
+
|
71 |
+
# Get the client and check its status
|
72 |
+
bedrock_client, bedrock_success, bedrock_error_msg = get_bedrock_client()
|
73 |
+
|
74 |
+
if not bedrock_success:
|
75 |
+
st.error(f"Error connecting to AWS Bedrock. Please check your AWS credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) and region (AWS_REGION) in your .env file or environment variables. Error: {bedrock_error_msg}")
|
76 |
+
st.stop() # Stop execution if Bedrock client cannot be initialized
|
77 |
+
else:
|
78 |
+
st.success(f"Successfully connected to AWS Bedrock in {AWS_REGION}!")
|
79 |
+
|
80 |
+
|
81 |
+
# --- LangChain Components ---
|
82 |
+
@st.cache_resource
|
83 |
+
def get_embeddings_model(_client): # Prepend underscore to tell Streamlit not to hash
|
84 |
+
"""Returns the BedrockEmbeddings model."""
|
85 |
+
return BedrockEmbeddings(client=_client, model_id=EMBEDDING_MODEL_ID)
|
86 |
+
|
87 |
+
@st.cache_resource
|
88 |
+
def get_llm_model(_client): # Prepend underscore to tell Streamlit not to hash
|
89 |
+
"""Returns the Bedrock LLM model for Claude 3 Sonnet."""
|
90 |
+
return ChatBedrock(
|
91 |
+
client=_client,
|
92 |
+
model_id=LLM_MODEL_ID,
|
93 |
+
streaming=False,
|
94 |
+
temperature=0.1,
|
95 |
+
model_kwargs={"max_tokens": 4000}
|
96 |
+
)
|
97 |
+
|
98 |
+
# --- PDF Processing and Vector Store Creation ---
|
99 |
+
def create_vector_store(pdf_file_path):
|
100 |
+
"""
|
101 |
+
Loads PDF, chunks it contextually for mathematical papers,
|
102 |
+
creates embeddings, and stores them in QdrantDB (in-memory).
|
103 |
+
"""
|
104 |
+
with st.spinner("Loading PDF and creating vector store..."):
|
105 |
+
# 1. Load PDF
|
106 |
+
loader = PyPDFLoader(pdf_file_path)
|
107 |
+
pages = loader.load_and_split()
|
108 |
+
st.info(f"Loaded {len(pages)} pages from the PDF.")
|
109 |
+
|
110 |
+
# 2. Contextual Chunking for Mathematical Papers
|
111 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
112 |
+
chunk_size=1500, # Increased chunk size for math papers
|
113 |
+
chunk_overlap=150, # Generous overlap to maintain context
|
114 |
+
separators=[
|
115 |
+
"\n\n", # Prefer splitting by paragraphs
|
116 |
+
"\n", # Then by newlines (might break equations but less likely than fixed char)
|
117 |
+
" ", # Then by spaces
|
118 |
+
"", # Fallback
|
119 |
+
],
|
120 |
+
length_function=len,
|
121 |
+
is_separator_regex=False,
|
122 |
+
)
|
123 |
+
chunks = text_splitter.split_documents(pages)
|
124 |
+
st.info(f"Split PDF into {len(chunks)} chunks.")
|
125 |
+
|
126 |
+
# 3. Create Embeddings and QdrantDB
|
127 |
+
embeddings = get_embeddings_model(bedrock_client)
|
128 |
+
|
129 |
+
# --- CHANGED: Qdrant vector store creation ---
|
130 |
+
vector_store = Qdrant.from_documents(
|
131 |
+
documents=chunks,
|
132 |
+
embedding=embeddings,
|
133 |
+
location=":memory:", # Use in-memory Qdrant instance
|
134 |
+
collection_name=QDRANT_COLLECTION_NAME,
|
135 |
+
# For persistent Qdrant (requires a running Qdrant server):
|
136 |
+
# url="http://localhost:6333", # Or your Qdrant Cloud URL
|
137 |
+
# api_key="YOUR_QDRANT_CLOUD_API_KEY", # Only for Qdrant Cloud
|
138 |
+
# prefer_grpc=True # Set to True if using gRPC for Qdrant Cloud
|
139 |
+
# force_recreate=True # Use with caution: deletes existing collection
|
140 |
+
)
|
141 |
+
# Note: LangChain's Qdrant integration will automatically create the collection
|
142 |
+
# if it doesn't exist, inferring vector_size from embeddings.
|
143 |
+
|
144 |
+
st.success("Vector store created and ready!")
|
145 |
+
return vector_store
|
146 |
+
|
147 |
+
# --- RAG Chain Construction ---
|
148 |
+
def get_rag_chain(vector_store):
|
149 |
+
"""Constructs the RAG chain using LCEL."""
|
150 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 relevant chunks
|
151 |
+
llm = get_llm_model(bedrock_client)
|
152 |
+
|
153 |
+
# Prompt Template optimized for mathematical research papers
|
154 |
+
prompt_template = ChatPromptTemplate.from_messages(
|
155 |
+
[
|
156 |
+
("system",
|
157 |
+
"You are an expert AI assistant specialized in analyzing and explaining mathematical research papers. "
|
158 |
+
"Your goal is to provide precise, accurate, and concise answers based *only* on the provided context from the research paper. "
|
159 |
+
"When answering, focus on definitions, theorems, proofs, key mathematical concepts, and experimental results. "
|
160 |
+
"If the user asks about a mathematical notation, try to explain its meaning from the context. "
|
161 |
+
"If the answer is not found in the context, explicitly state that you cannot find the information within the provided document. "
|
162 |
+
"Do not invent information or make assumptions outside the given text.\n\n"
|
163 |
+
"Context:\n{context}"),
|
164 |
+
("user", "{question}"),
|
165 |
+
]
|
166 |
+
)
|
167 |
+
|
168 |
+
rag_chain = (
|
169 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
170 |
+
| prompt_template
|
171 |
+
| llm
|
172 |
+
| StrOutputParser()
|
173 |
+
)
|
174 |
+
return rag_chain
|
175 |
+
|
176 |
+
# --- Streamlit UI Main Logic ---
|
177 |
+
|
178 |
+
# Initialize chat history
|
179 |
+
if "messages" not in st.session_state:
|
180 |
+
st.session_state.messages = []
|
181 |
+
|
182 |
+
# Initialize vector store and RAG chain
|
183 |
+
if "vector_store" not in st.session_state:
|
184 |
+
st.session_state.vector_store = None
|
185 |
+
if "rag_chain" not in st.session_state:
|
186 |
+
st.session_state.rag_chain = None
|
187 |
+
if "pdf_uploaded" not in st.session_state:
|
188 |
+
st.session_state.pdf_uploaded = False
|
189 |
+
|
190 |
+
|
191 |
+
# Sidebar for PDF Upload
|
192 |
+
with st.sidebar:
|
193 |
+
st.header("Upload PDF")
|
194 |
+
uploaded_file = st.file_uploader(
|
195 |
+
"Choose a PDF file",
|
196 |
+
type="pdf",
|
197 |
+
accept_multiple_files=False,
|
198 |
+
key="pdf_uploader"
|
199 |
+
)
|
200 |
+
|
201 |
+
if uploaded_file and not st.session_state.pdf_uploaded:
|
202 |
+
# Save the uploaded file temporarily
|
203 |
+
with open("temp_doc.pdf", "wb") as f:
|
204 |
+
f.write(uploaded_file.getbuffer())
|
205 |
+
|
206 |
+
st.session_state.vector_store = create_vector_store("temp_doc.pdf")
|
207 |
+
st.session_state.rag_chain = get_rag_chain(st.session_state.vector_store)
|
208 |
+
st.session_state.pdf_uploaded = True
|
209 |
+
st.success("PDF processed successfully! You can now ask questions.")
|
210 |
+
# Clean up temporary file
|
211 |
+
os.remove("temp_doc.pdf")
|
212 |
+
elif st.session_state.pdf_uploaded:
|
213 |
+
st.info("PDF already processed. Ready for questions!")
|
214 |
+
|
215 |
+
|
216 |
+
# Display chat messages from history on app rerun
|
217 |
+
for message in st.session_state.messages:
|
218 |
+
with st.chat_message(message["role"]):
|
219 |
+
st.markdown(message["content"])
|
220 |
+
|
221 |
+
# Accept user input
|
222 |
+
if prompt := st.chat_input("Ask a question about the paper..."):
|
223 |
+
if not st.session_state.pdf_uploaded:
|
224 |
+
st.warning("Please upload a PDF first to start asking questions.")
|
225 |
+
else:
|
226 |
+
# Add user message to chat history
|
227 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
228 |
+
with st.chat_message("user"):
|
229 |
+
st.markdown(prompt)
|
230 |
+
|
231 |
+
# Get response from RAG chain
|
232 |
+
with st.chat_message("assistant"):
|
233 |
+
with st.spinner("Thinking..."):
|
234 |
+
try:
|
235 |
+
full_response = st.session_state.rag_chain.invoke(prompt)
|
236 |
+
st.markdown(full_response, unsafe_allow_html=True)
|
237 |
+
|
238 |
+
# Add assistant response to chat history
|
239 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
240 |
+
except Exception as e:
|
241 |
+
st.error(f"An error occurred during response generation: {e}")
|
242 |
+
st.warning("Please try again or check your AWS Bedrock access permissions.")
|
243 |
|
244 |
+
# Optional: Clear chat and uploaded PDF
|
245 |
+
if st.session_state.pdf_uploaded:
|
246 |
+
if st.sidebar.button("Clear Chat and Upload New PDF"):
|
247 |
+
st.session_state.messages = []
|
248 |
+
st.session_state.vector_store = None
|
249 |
+
st.session_state.rag_chain = None
|
250 |
+
st.session_state.pdf_uploaded = False
|
251 |
+
st.cache_resource.clear() # Clear streamlit caches for a clean slate
|
252 |
+
st.rerun()
|