Spaces:
Sleeping
Sleeping
File size: 6,792 Bytes
7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed b4c529c 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed 7ad4ea6 07ca3ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import json
import requests
import boto3
import streamlit as st
from dotenv import load_dotenv
# Load env (for local dev / Hugging Face secrets)
load_dotenv()
# Configs
OPENWEATHERMAP_API_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
# AWS Bedrock Runtime
session = boto3.Session(
aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"),
region_name=AWS_REGION
)
bedrock_runtime = session.client("bedrock-runtime")
# Streamlit Page Config
st.set_page_config(page_title="π€οΈ Weather Umbrella Advisor", page_icon="β", layout="centered")
# --- Title Section ---
st.markdown("""
<div style="text-align: center;">
<h1 style="color: #3c79f5;">β Weather Umbrella Advisor</h1>
<p style="font-size: 18px;">Ask me if you need to carry an umbrella tomorrow, powered by <b>Claude + OpenWeatherMap</b>.</p>
</div>
""", unsafe_allow_html=True)
# Chat history state
if "messages" not in st.session_state:
st.session_state.messages = []
# --- Display Past Messages ---
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# --- Weather API Call ---
def get_weather(location):
"""Fetches weather data for next 24 hours for given city."""
if not location.strip():
return {"error": "Please specify a valid location."}
try:
geo_url = f"http://api.openweathermap.org/geo/1.0/direct?q={location}&limit=1&appid={OPENWEATHERMAP_API_KEY}"
geo_resp = requests.get(geo_url).json()
if not geo_resp:
return {"error": f"Location '{location}' not found."}
lat, lon = geo_resp[0]['lat'], geo_resp[0]['lon']
weather_url = f"http://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={OPENWEATHERMAP_API_KEY}&units=metric"
weather_data = requests.get(weather_url).json()
if 'list' not in weather_data:
return {"error": f"Unable to fetch weather forecast for '{location}'."}
forecast = [{
"time": f["dt_txt"],
"description": f["weather"][0]["description"].capitalize(),
"rain_probability": round(f.get("pop", 0) * 100, 1),
"temp": f["main"]["temp"],
"humidity": f["main"]["humidity"]
} for f in weather_data['list'][:8]] # 24 hrs = 8 x 3hr blocks
return {"location": location.title(), "forecast": forecast}
except Exception as e:
return {"error": str(e)}
# --- ReAct-Powered Response Generator ---
def generate_react_response(user_input, conversation_history=""):
"""Uses Claude with ReAct to give umbrella recommendation."""
system_prompt = """You are a helpful assistant using the ReAct (Reasoning + Acting) method to answer whether the user should carry an umbrella tomorrow.
Steps:
1. Think about the question.
2. Act using get_weather(location).
3. Observe the weather data.
4. Reason and give a clear answer.
When you need weather data, reply in this format:
{
"thought": "Need weather info for [location]",
"action": "get_weather",
"action_input": {"location": "city_name"}
}
If no location is mentioned, ask the user to specify one.
If you have the weather data, give a natural reply like:
"You do not need an umbrella tomorrow in London, as it's expected to be sunny and dry."
"""
messages = [{"role": "user", "content": f"{system_prompt}\n\nChat history:\n{conversation_history}\n\nUser: {user_input}"}]
claude_body = {
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 1000,
"temperature": 0.7,
"top_p": 0.9,
"messages": messages
}
response = bedrock_runtime.invoke_model(
modelId="anthropic.claude-3-sonnet-20240229-v1:0",
contentType="application/json",
accept="application/json",
body=json.dumps(claude_body),
)
content = json.loads(response["body"].read())["content"][0]["text"].strip()
# Try parsing ReAct JSON
try:
parsed = json.loads(content)
if parsed.get("action") == "get_weather":
location = parsed["action_input"]["location"]
if not location:
return "Please tell me which city you're asking about π."
weather_data = get_weather(location)
if "error" in weather_data:
return weather_data["error"]
forecast_str = json.dumps(weather_data, indent=2)
reasoning_prompt = f"""Based on this weather forecast for {location}, give an umbrella recommendation:
{forecast_str}
Return a natural response that includes:
- Location
- Conditions (rain %, sky, etc.)
- Clear YES/NO umbrella advice
"""
final_response = bedrock_runtime.invoke_model(
modelId="anthropic.claude-3-sonnet-20240229-v1:0",
contentType="application/json",
accept="application/json",
body=json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 500,
"temperature": 0.7,
"messages": [{"role": "user", "content": reasoning_prompt}]
})
)
return json.loads(final_response["body"].read())["content"][0]["text"].strip()
except json.JSONDecodeError:
pass # Possibly just a reply from Claude
return content
# --- Chat Input Handling ---
def build_convo_history():
return "\n".join([f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages[-4:]])
if user_prompt := st.chat_input("Ask: Do I need an umbrella tomorrow?"):
st.session_state.messages.append({"role": "user", "content": user_prompt})
with st.chat_message("user"):
st.markdown(user_prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking... π€"):
history = build_convo_history()
response = generate_react_response(user_prompt, history)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# --- Sidebar ---
with st.sidebar:
st.image("https://img.icons8.com/clouds/100/umbrella.png", width=100)
st.markdown("## βοΈ About")
st.markdown("""
**Weather Assistant** gives you umbrella advice using:
- π¦οΈ Real-time weather via **OpenWeatherMap**
- π§ Smart reasoning via **Claude (Bedrock)**
- π€ ReAct method: Think β’ Act β’ Observe β’ Reason
---
### π¬ Try Saying
- "Should I bring an umbrella tomorrow?"
- "Will it rain in Delhi tomorrow?"
- "Do I need an umbrella in Tokyo?"
---
### π§ Tools Used
- Claude 3 Sonnet (Bedrock)
- OpenWeatherMap API
- Streamlit (frontend)
""")
|