Weather_Agent / app.py
MathWizard1729's picture
Update app.py
7ad4ea6 verified
raw
history blame
8.39 kB
import os
import json
import requests
import boto3
import streamlit as st
from dotenv import load_dotenv
load_dotenv()
# Environment config
OPENWEATHERMAP_API_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
# Bedrock Claude client
bedrock = boto3.client("bedrock-runtime", region_name=AWS_REGION)
# App UI
st.title("Weather Assistant - Umbrella Advisor")
st.markdown("Ask me if you should carry an umbrella tomorrow!")
# Session state for chat
if "messages" not in st.session_state:
st.session_state.messages = []
# Chat history display
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
def get_weather(location):
"""Get weather forecast for a specific location"""
print(f"Getting weather for: {location}")
# Validate location input
if not location or location.strip() == "":
return {"error": "Please specify a valid location/city name."}
location = location.strip()
geo_url = f"http://api.openweathermap.org/geo/1.0/direct?q={location}&limit=1&appid={OPENWEATHERMAP_API_KEY}"
try:
geo_resp = requests.get(geo_url).json()
if not geo_resp or len(geo_resp) == 0:
return {"error": f"Location '{location}' not found. Please check the spelling and try again."}
lat, lon = geo_resp[0]['lat'], geo_resp[0]['lon']
except (KeyError, IndexError, requests.RequestException) as e:
return {"error": f"Error getting location data for '{location}': {str(e)}"}
try:
weather_url = f"http://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={OPENWEATHERMAP_API_KEY}&units=metric"
weather_data = requests.get(weather_url).json()
if 'list' not in weather_data:
return {"error": f"Unable to get weather forecast for '{location}'."}
forecast = []
for f in weather_data['list'][:8]: # Next 24 hours
forecast.append({
"time": f["dt_txt"],
"description": f["weather"][0]["description"],
"rain_probability": f.get("pop", 0) * 100,
"temp": f["main"]["temp"],
"humidity": f["main"]["humidity"]
})
return {
"location": location,
"forecast": forecast
}
except (KeyError, requests.RequestException) as e:
return {"error": f"Error getting weather forecast for '{location}': {str(e)}"}
def generate_react_response(user_input, conversation_history=""):
"""Generate response using ReAct (Reasoning + Acting) approach"""
system_prompt = """You are a helpful weather assistant that uses ReAct (Reasoning + Acting) methodology to help users decide about carrying umbrellas.
Follow this process:
1. **Think**: Analyze what the user is asking
2. **Act**: Use available tools if needed
3. **Observe**: Process the results
4. **Reason**: Draw conclusions and provide advice
Available tools:
- get_weather(location): Gets weather forecast for tomorrow
When you need to get weather data, respond with this JSON format:
{
"thought": "I need to get weather data for [location] to advise about umbrella",
"action": "get_weather",
"action_input": {"location": "city_name"}
}
When you have all needed information, provide a conversational response that includes:
- The location
- Your reasoning based on weather conditions
- Clear umbrella advice
Example: "You do not need to carry an umbrella tomorrow as the weather in New York will be sunny with no chance of rain."
If the user doesn't specify a location, ask them to specify it conversationally."""
# Build conversation context
messages = [
{"role": "user", "content": f"{system_prompt}\n\nConversation history: {conversation_history}\n\nUser: {user_input}"}
]
claude_body = {
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 1000,
"temperature": 0.7,
"top_p": 0.9,
"messages": messages
}
response = bedrock.invoke_model(
modelId="anthropic.claude-3-sonnet-20240229-v1:0",
contentType="application/json",
accept="application/json",
body=json.dumps(claude_body),
)
content = json.loads(response["body"].read())["content"][0]["text"].strip()
# Try to parse as ReAct JSON
try:
react_response = json.loads(content)
if react_response.get("action") == "get_weather":
location = react_response.get("action_input", {}).get("location", "").strip()
thought = react_response.get("thought", "")
# Validate location before calling weather function
if not location:
return "I need to know which city or location you're asking about. Could you please specify the location?"
# Get weather data
weather_data = get_weather(location)
if "error" in weather_data:
return weather_data["error"]
# Process weather data and generate final reasoning
try:
reasoning_prompt = f"""Based on this weather data for {location}, provide your final umbrella recommendation:
Weather forecast: {json.dumps(weather_data, indent=2)}
Your previous thought: {thought}
Provide a conversational response that includes:
1. The location
2. Your reasoning based on the weather conditions
3. Clear umbrella advice
Format like: "You [do/do not] need to carry an umbrella tomorrow as the weather in [location] will be [conditions and reasoning]."
"""
final_messages = [{"role": "user", "content": reasoning_prompt}]
final_body = {
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 500,
"temperature": 0.7,
"messages": final_messages
}
final_response = bedrock.invoke_model(
modelId="anthropic.claude-3-sonnet-20240229-v1:0",
contentType="application/json",
accept="application/json",
body=json.dumps(final_body),
)
final_content = json.loads(final_response["body"].read())["content"][0]["text"].strip()
return final_content
except Exception as e:
return f"Error processing weather data: {str(e)}"
except json.JSONDecodeError:
# If not JSON, return the content as is (probably asking for location)
pass
return content
def build_conversation_history():
"""Build conversation history for context"""
history = []
for msg in st.session_state.messages[-4:]: # Last 4 messages for context
history.append(f"{msg['role'].capitalize()}: {msg['content']}")
return "\n".join(history)
if prompt := st.chat_input("Type your question here..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
conversation_history = build_conversation_history()
reply = generate_react_response(prompt, conversation_history)
st.markdown(reply)
st.session_state.messages.append({"role": "assistant", "content": reply})
with st.sidebar:
st.header("About")
st.markdown("""
- Powered by **AWS Bedrock (Claude Sonnet)**
- Uses **ReAct (Reasoning + Acting)** methodology
- Retrieves real-time data from **OpenWeatherMap**
- Provides step-by-step reasoning for umbrella advice
""")
st.subheader("Sample Prompts")
st.markdown("""
- Should I bring an umbrella tomorrow?
- Will it rain in Delhi tomorrow?
- Do I need an umbrella in Tokyo?
- Should I carry an umbrella tomorrow in London?
""")
st.subheader("ReAct Process")
st.markdown("""
1. **Think**: Analyze your question
2. **Act**: Get weather data if needed
3. **Observe**: Process weather information
4. **Reason**: Provide umbrella advice with explanation
""")