File size: 8,201 Bytes
7e0376e
 
5a25b6c
 
7e0376e
 
 
 
 
 
5a25b6c
7e0376e
 
a9e44d5
7e0376e
5a25b6c
 
7e0376e
 
 
5a483b6
a9e44d5
638d3bd
 
 
 
a9e44d5
 
 
7e0376e
 
 
 
 
 
 
 
 
 
db20d3e
7e0376e
 
 
 
 
 
 
638d3bd
7e0376e
 
23e4ec1
85456b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638d3bd
7e0376e
 
 
 
 
 
 
23e4ec1
 
7e0376e
 
 
23e4ec1
7e0376e
 
 
 
 
5a25b6c
6c6b13d
7e0376e
0b6b43b
b88f82b
0b6b43b
7c84c92
 
0b6b43b
 
 
 
 
7c84c92
7e0376e
a9e44d5
 
7c84c92
 
7e0376e
 
a9e44d5
7e0376e
 
 
 
 
23e4ec1
7e0376e
23e4ec1
7e0376e
 
638d3bd
7e0376e
 
 
638d3bd
7e0376e
 
638d3bd
7e0376e
 
 
 
 
0b6b43b
638d3bd
0b6b43b
 
 
 
 
7e0376e
 
 
0b6b43b
 
638d3bd
0b6b43b
 
638d3bd
 
7c84c92
638d3bd
7e0376e
 
638d3bd
a9e44d5
 
 
 
 
 
7c84c92
a9e44d5
 
 
7e0376e
 
 
 
 
 
0b6b43b
7c84c92
7e0376e
 
78efa10
7e0376e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import logging
import os
import shlex
import subprocess
import tempfile
import time

import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial

subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation


HEADER = """
# 3D
1. Se você achar que o resultado não é satisfatório, tente alterar a proporção do primeiro plano. Pode melhorar os resultados.
2. É melhor desabilitar "Remover plano de fundo" para os exemplos fornecidos, pois eles já foram pré-processados.
3. Caso contrário, desative a opção "Remover plano de fundo" somente se sua imagem de entrada for RGBA com fundo transparente, o conteúdo da imagem estiver centralizado e ocupar mais de 70% da largura ou altura da imagem.
"""


if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("Nenhuma Imagem Carregada!")


def preprocess(input_image, do_remove_background, foreground_ratio):
    def pre_process(img: np.array) -> np.array:
        # H, W, C -> C, H, W
        img = np.transpose(img[:, :, 0:3], (2, 0, 1))
        # C, H, W -> 1, C, H, W
        img = np.expand_dims(img, axis=0).astype(np.float32)
        return img


    def post_process(img: np.array) -> np.array:
        # 1, C, H, W -> C, H, W
        img = np.squeeze(img)
        # C, H, W -> H, W, C
        img = np.transpose(img, (1, 2, 0))[:, :, ::-1].astype(np.uint8)
        return img


    def inference(model_path: str, img_array: np.array) -> np.array:
        options = onnxruntime.SessionOptions()
        options.intra_op_num_threads = 1
        options.inter_op_num_threads = 1
        ort_session = onnxruntime.InferenceSession(model_path, options)
        ort_inputs = {ort_session.get_inputs()[0].name: img_array}
        ort_outs = ort_session.run(None, ort_inputs)

        return ort_outs[0]


    def convert_pil_to_cv2(input_image):
        # pil_image = image.convert("RGB")
        open_cv_image = np.array(input_image)
        # RGB to BGR
        open_cv_image = open_cv_image[:, :, ::-1].copy()
        return open_cv_image


    def upscale(image, model):
        model_path = f"models/{model}.ort"
        img = convert_pil_to_cv2(image)
        if img.ndim == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

        if img.shape[2] == 4:
            alpha = img[:, :, 3]  # GRAY
            alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR)  # BGR
            alpha_output = post_process(inference(model_path, pre_process(alpha)))  # BGR
            alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY)  # GRAY

            img = img[:, :, 0:3]  # BGR
            image_output = post_process(inference(model_path, pre_process(img)))  # BGR
            image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA)  # BGRA
            image_output[:, :, 3] = alpha_output

        elif img.shape[2] == 3:
            image_output = post_process(inference(model_path, pre_process(img)))  # BGR

        return image_output



    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image




    if do_remove_background:
        image = image_output.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = image_output
        if image.mode == "RGBA":
            image = fill_background(image)
    return image


    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image


@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "stl"]):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
    mesh = to_gradio_3d_orientation(mesh)

    mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".stl", delete=False)
    mesh.export(mesh_path_glb.name)

    mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
    mesh.apply_scale([-1, 1, 1])  # Otherwise the visualized .obj will be flipped
    mesh.export(mesh_path_obj.name)
    
    return mesh_path_obj.name, mesh_path_glb.name

def run_example(image_pil):
    preprocessed = preprocess(image_pil, False, 0.9)
    mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "stl"])
    return preprocessed, mesh_name_obj, mesh_name_glb

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(label="Imagem Processada", interactive=False)
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remover Background", value=True
                    )
                    foreground_ratio = gr.Slider(
                        label="Proporção de Primeiro Plano",
                        minimum=0.5,
                        maximum=1.0,
                        value=0.85,
                        step=0.05,
                    )
                    mc_resolution = gr.Slider(
                        label="Marching Cubes Resolução",
                        minimum=32,
                        maximum=320,
                        value=256,
                        step=32
                     )
            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")
        with gr.Column():
            with gr.Tab("OBJ"):
                output_model_obj = gr.Model3D(
                    label="Saida do Modelo (OBJ Format)",
                    interactive=False,
                )
                gr.Markdown("")
            with gr.Tab("STL"):
                output_model_glb = gr.Model3D(
                    label="Saída do Modelo (STL Format)",
                    interactive=False,
                )
                gr.Markdown("Nota: O modelo mostrado aqui tem uma aparência mais escura. Baixe para obter resultados corretos.")
    with gr.Row(variant="panel"):
        gr.Examples(
            examples=[
                os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
            ],
            inputs=[input_image],
            outputs=[processed_image, output_model_obj, output_model_glb],
            cache_examples=True,
            examples_per_page=20
        )
    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background, foreground_ratio],
        outputs=[processed_image],
    ).success(
        fn=generate,
        inputs=[processed_image, mc_resolution],
        outputs=[output_model_obj, output_model_glb],
    )

demo.queue(max_size=10)
demo.launch()