Spaces:
Runtime error
Runtime error
File size: 8,201 Bytes
7e0376e 5a25b6c 7e0376e 5a25b6c 7e0376e a9e44d5 7e0376e 5a25b6c 7e0376e 5a483b6 a9e44d5 638d3bd a9e44d5 7e0376e db20d3e 7e0376e 638d3bd 7e0376e 23e4ec1 85456b1 638d3bd 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e 5a25b6c 6c6b13d 7e0376e 0b6b43b b88f82b 0b6b43b 7c84c92 0b6b43b 7c84c92 7e0376e a9e44d5 7c84c92 7e0376e a9e44d5 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e 638d3bd 7e0376e 638d3bd 7e0376e 638d3bd 7e0376e 0b6b43b 638d3bd 0b6b43b 7e0376e 0b6b43b 638d3bd 0b6b43b 638d3bd 7c84c92 638d3bd 7e0376e 638d3bd a9e44d5 7c84c92 a9e44d5 7e0376e 0b6b43b 7c84c92 7e0376e 78efa10 7e0376e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import logging
import os
import shlex
import subprocess
import tempfile
import time
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
HEADER = """
# 3D
1. Se você achar que o resultado não é satisfatório, tente alterar a proporção do primeiro plano. Pode melhorar os resultados.
2. É melhor desabilitar "Remover plano de fundo" para os exemplos fornecidos, pois eles já foram pré-processados.
3. Caso contrário, desative a opção "Remover plano de fundo" somente se sua imagem de entrada for RGBA com fundo transparente, o conteúdo da imagem estiver centralizado e ocupar mais de 70% da largura ou altura da imagem.
"""
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
def check_input_image(input_image):
if input_image is None:
raise gr.Error("Nenhuma Imagem Carregada!")
def preprocess(input_image, do_remove_background, foreground_ratio):
def pre_process(img: np.array) -> np.array:
# H, W, C -> C, H, W
img = np.transpose(img[:, :, 0:3], (2, 0, 1))
# C, H, W -> 1, C, H, W
img = np.expand_dims(img, axis=0).astype(np.float32)
return img
def post_process(img: np.array) -> np.array:
# 1, C, H, W -> C, H, W
img = np.squeeze(img)
# C, H, W -> H, W, C
img = np.transpose(img, (1, 2, 0))[:, :, ::-1].astype(np.uint8)
return img
def inference(model_path: str, img_array: np.array) -> np.array:
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 1
options.inter_op_num_threads = 1
ort_session = onnxruntime.InferenceSession(model_path, options)
ort_inputs = {ort_session.get_inputs()[0].name: img_array}
ort_outs = ort_session.run(None, ort_inputs)
return ort_outs[0]
def convert_pil_to_cv2(input_image):
# pil_image = image.convert("RGB")
open_cv_image = np.array(input_image)
# RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def upscale(image, model):
model_path = f"models/{model}.ort"
img = convert_pil_to_cv2(image)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if img.shape[2] == 4:
alpha = img[:, :, 3] # GRAY
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR) # BGR
alpha_output = post_process(inference(model_path, pre_process(alpha))) # BGR
alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY) # GRAY
img = img[:, :, 0:3] # BGR
image_output = post_process(inference(model_path, pre_process(img))) # BGR
image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA) # BGRA
image_output[:, :, 3] = alpha_output
elif img.shape[2] == 3:
image_output = post_process(inference(model_path, pre_process(img))) # BGR
return image_output
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = image_output.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = image_output
if image.mode == "RGBA":
image = fill_background(image)
return image
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
return image
@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "stl"]):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".stl", delete=False)
mesh.export(mesh_path_glb.name)
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
mesh.export(mesh_path_obj.name)
return mesh_path_obj.name, mesh_path_glb.name
def run_example(image_pil):
preprocessed = preprocess(image_pil, False, 0.9)
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "stl"])
return preprocessed, mesh_name_obj, mesh_name_glb
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(label="Imagem Processada", interactive=False)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remover Background", value=True
)
foreground_ratio = gr.Slider(
label="Proporção de Primeiro Plano",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
mc_resolution = gr.Slider(
label="Marching Cubes Resolução",
minimum=32,
maximum=320,
value=256,
step=32
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Column():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Saida do Modelo (OBJ Format)",
interactive=False,
)
gr.Markdown("")
with gr.Tab("STL"):
output_model_glb = gr.Model3D(
label="Saída do Modelo (STL Format)",
interactive=False,
)
gr.Markdown("Nota: O modelo mostrado aqui tem uma aparência mais escura. Baixe para obter resultados corretos.")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=[input_image],
outputs=[processed_image, output_model_obj, output_model_glb],
cache_examples=True,
examples_per_page=20
)
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background, foreground_ratio],
outputs=[processed_image],
).success(
fn=generate,
inputs=[processed_image, mc_resolution],
outputs=[output_model_obj, output_model_glb],
)
demo.queue(max_size=10)
demo.launch()
|