File size: 5,059 Bytes
5121a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd64fb4
5121a37
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import joblib
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl 
from sklearn.metrics.pairwise import cosine_distances
from sentence_transformers import SentenceTransformer

class IntentClassifier(pl.LightningModule):
    def __init__(self, input_dim=384, hidden_dim=256, output_dim=150, lr=1e-3, weight_decay=1e-4):
        super().__init__()
        self.save_hyperparameters()

        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.bn1 = nn.BatchNorm1d(hidden_dim)         
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.3)               
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.fc1(x)
        x = self.bn1(x)           
        x = self.relu(x)
        x = self.dropout(x)        
        return self.fc2(x)
    
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.cross_entropy(logits, y)
        self.log("train_loss", loss)
        return loss


    def validation_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        preds = torch.argmax(logits, dim=1)

    
        mask = y != -1
    
        if mask.sum() > 0:
            val_loss = F.cross_entropy(logits[mask], y[mask])
            val_acc = (preds[mask] == y[mask]).float().mean()
        else:
            val_loss = torch.tensor(0.0, device=self.device)
            val_acc = torch.tensor(0.0, device=self.device)
    
        self.log("val_loss", val_loss, prog_bar=True)
        self.log("val_acc", val_acc, prog_bar=True)

    
    def configure_optimizers(self):
        return torch.optim.Adam(
            self.parameters(), 
            lr=self.hparams.lr,
            weight_decay=1e-4  
        )

class IntentClassifierWithOOS:
    def __init__(self, embedder, classifier, oos_detector, label_encoder, centroids_dict, oos_threshold=0.5, device="cpu"):
        self.embedder = embedder  # SentenceTransformer
        self.classifier = classifier.eval().to(device)  # MLP
        self.oos_detector = oos_detector  # pipeline sklearn
        self.label_encoder = label_encoder  # fitted LabelEncoder
        self.centroids_dict = centroids_dict  # {class_id: centroid}
        self.threshold = oos_threshold
        self.device = device

    def _compute_features(self, embedding, logits, predicted_class):
        probs = F.softmax(logits, dim=0).cpu().numpy()
        entropy = -np.sum(probs * np.log(probs + 1e-10))
        msp = np.max(probs)
        energy = torch.logsumexp(logits, dim=0).item()

        # Logit gap
        sorted_logits = torch.sort(logits, descending=True).values
        logit_gap = (sorted_logits[0] - sorted_logits[1]).item()

        # Euclidean distance to class centroid
        centroid = self.centroids_dict.get(predicted_class)
        dist = np.linalg.norm(embedding - centroid) if centroid is not None else np.nan

        # Cosine distance
        cos_dist = cosine_distances([embedding], [centroid])[0][0] if centroid is not None else np.nan

        norm_emb = np.linalg.norm(embedding)

        return np.array([entropy, msp, dist])  


    def predict(self, sentence):
        # 1. Embedding
        embedding = self.embedder.encode(sentence)
        embedding = np.array(embedding)  
        embedding_tensor = torch.tensor(embedding, dtype=torch.float32).unsqueeze(0).to(self.device)

        # 2. Intent prediction (MLP)
        with torch.no_grad():
            logits = self.classifier(embedding_tensor)
            logits = logits.squeeze(0)  
        probs = F.softmax(logits, dim=0)
        predicted_class = torch.argmax(probs).item()
        confidence = probs[predicted_class].item()

        # 3. Feature extraction
        features = self._compute_features(embedding, logits, predicted_class).reshape(1, -1)

        # 4. OOS detection
        oos_score = self.oos_detector.predict_proba(features)[0, 1]
        is_oos = oos_score >= self.threshold

        # 5. Output
        return {
            "intent": "oos" if is_oos else self.label_encoder.inverse_transform([predicted_class])[0],
            "is_oos": bool(is_oos),
            "confidence": None if is_oos else confidence,
            "oos_score": oos_score
        }


# Load all saved components from the current directory
best_model = IntentClassifier.load_from_checkpoint(
    "intent_classifier.ckpt",
    map_location=torch.device("cpu")
)

oos_detector = joblib.load("oos_detector.pkl")
label_encoder = joblib.load("label_encoder.pkl")
class_centroids = joblib.load("class_centroids.pkl")
best_threshold = joblib.load("oos_threshold.pkl")

print("Model charging")
# Recharger l'embedding model
embedder = SentenceTransformer("intfloat/e5-small-v2")

# Build the full inference model
model = IntentClassifierWithOOS(
    embedder=embedder,
    classifier=best_model,
    oos_detector=oos_detector,
    label_encoder=label_encoder,
    centroids_dict=class_centroids,
    oos_threshold=best_threshold,
    device="cpu"
)