intent-classifier / inference.py
admchiem
Ajout du print pour vérifier que le modèle ne se recharge qu'une fois
fd64fb4
raw
history blame
5.06 kB
import numpy as np
import joblib
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from sklearn.metrics.pairwise import cosine_distances
from sentence_transformers import SentenceTransformer
class IntentClassifier(pl.LightningModule):
def __init__(self, input_dim=384, hidden_dim=256, output_dim=150, lr=1e-3, weight_decay=1e-4):
super().__init__()
self.save_hyperparameters()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.bn1 = nn.BatchNorm1d(hidden_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.3)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.fc1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.dropout(x)
return self.fc2(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.cross_entropy(logits, y)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
preds = torch.argmax(logits, dim=1)
mask = y != -1
if mask.sum() > 0:
val_loss = F.cross_entropy(logits[mask], y[mask])
val_acc = (preds[mask] == y[mask]).float().mean()
else:
val_loss = torch.tensor(0.0, device=self.device)
val_acc = torch.tensor(0.0, device=self.device)
self.log("val_loss", val_loss, prog_bar=True)
self.log("val_acc", val_acc, prog_bar=True)
def configure_optimizers(self):
return torch.optim.Adam(
self.parameters(),
lr=self.hparams.lr,
weight_decay=1e-4
)
class IntentClassifierWithOOS:
def __init__(self, embedder, classifier, oos_detector, label_encoder, centroids_dict, oos_threshold=0.5, device="cpu"):
self.embedder = embedder # SentenceTransformer
self.classifier = classifier.eval().to(device) # MLP
self.oos_detector = oos_detector # pipeline sklearn
self.label_encoder = label_encoder # fitted LabelEncoder
self.centroids_dict = centroids_dict # {class_id: centroid}
self.threshold = oos_threshold
self.device = device
def _compute_features(self, embedding, logits, predicted_class):
probs = F.softmax(logits, dim=0).cpu().numpy()
entropy = -np.sum(probs * np.log(probs + 1e-10))
msp = np.max(probs)
energy = torch.logsumexp(logits, dim=0).item()
# Logit gap
sorted_logits = torch.sort(logits, descending=True).values
logit_gap = (sorted_logits[0] - sorted_logits[1]).item()
# Euclidean distance to class centroid
centroid = self.centroids_dict.get(predicted_class)
dist = np.linalg.norm(embedding - centroid) if centroid is not None else np.nan
# Cosine distance
cos_dist = cosine_distances([embedding], [centroid])[0][0] if centroid is not None else np.nan
norm_emb = np.linalg.norm(embedding)
return np.array([entropy, msp, dist])
def predict(self, sentence):
# 1. Embedding
embedding = self.embedder.encode(sentence)
embedding = np.array(embedding)
embedding_tensor = torch.tensor(embedding, dtype=torch.float32).unsqueeze(0).to(self.device)
# 2. Intent prediction (MLP)
with torch.no_grad():
logits = self.classifier(embedding_tensor)
logits = logits.squeeze(0)
probs = F.softmax(logits, dim=0)
predicted_class = torch.argmax(probs).item()
confidence = probs[predicted_class].item()
# 3. Feature extraction
features = self._compute_features(embedding, logits, predicted_class).reshape(1, -1)
# 4. OOS detection
oos_score = self.oos_detector.predict_proba(features)[0, 1]
is_oos = oos_score >= self.threshold
# 5. Output
return {
"intent": "oos" if is_oos else self.label_encoder.inverse_transform([predicted_class])[0],
"is_oos": bool(is_oos),
"confidence": None if is_oos else confidence,
"oos_score": oos_score
}
# Load all saved components from the current directory
best_model = IntentClassifier.load_from_checkpoint(
"intent_classifier.ckpt",
map_location=torch.device("cpu")
)
oos_detector = joblib.load("oos_detector.pkl")
label_encoder = joblib.load("label_encoder.pkl")
class_centroids = joblib.load("class_centroids.pkl")
best_threshold = joblib.load("oos_threshold.pkl")
print("Model charging")
# Recharger l'embedding model
embedder = SentenceTransformer("intfloat/e5-small-v2")
# Build the full inference model
model = IntentClassifierWithOOS(
embedder=embedder,
classifier=best_model,
oos_detector=oos_detector,
label_encoder=label_encoder,
centroids_dict=class_centroids,
oos_threshold=best_threshold,
device="cpu"
)