Spaces:
Sleeping
Sleeping
File size: 1,173 Bytes
ffd4428 335f18b ffd4428 335f18b a5643e3 d2b35f2 99e6bfb d2b35f2 ffd4428 d2b35f2 ffd4428 d2b35f2 ebd8530 993705a ebd8530 3319852 4b5220d ebd8530 eb76bbd e119c7e 99e6bfb f7d8d92 eb76bbd e119c7e ebd8530 e119c7e ebd8530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
# Use a pipeline as a high-level helper
from transformers import pipeline
toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic")
text2tweet = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
# text2audio
def text2audio(toxic_result):
pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
audio_data = pipe(toxic_result)
return audio_data
st.set_page_config(page_title="Generate Your Tweet and Toxicity Analysis")
st.header("Please input your first word of a Tweet :performing_arts:")
input = st.text_input("Please input your first word...")
if input is not None:
#Stage 1: Input to Tweet
st.text('Generating a Tweet...')
tweet = text2tweet(input)
st.write(tweet)
#Stage 2: Tweet Toxicity Analysis
#Stage 3: Story to Audio data
st.text('Generating audio data...')
audio_data =text2audio(tweet)
# Play button
if st.button("Play Audio"):
st.audio(audio_data['audio'],
format="audio/wav",
start_time=0,
sample_rate = audio_data['sampling_rate']) |