File size: 743 Bytes
ffd4428
335f18b
 
ffd4428
 
335f18b
a5643e3
d2b35f2
fa0b08d
35f5bf3
ebd8530
fa0b08d
35f5bf3
 
a716b14
 
 
 
 
 
 
 
 
 
 
 
 
fa0b08d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import streamlit as st

# Use a pipeline as a high-level helper
from transformers import pipeline

toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic")  
    


st.set_page_config(page_title="Tweet Toxicity Analysis")

st.header("Please input your Tweet for Toxicity Analysis :performing_arts:")
input = st.text_area("Enter a Tweer for analysis")
result = toxic_model(input)

  # Display the classification result
    max_score = float('-inf')
    max_label = ''

    for result in results:
        if result['score'] > max_score:
            max_score = result['score']
            max_label = result['label']

    st.write("Tweet:", input)
    st.write("Label:", max_label)
    st.write("Score:", max_score)