File size: 1,258 Bytes
ffd4428
335f18b
 
ffd4428
 
335f18b
a5643e3
d2b35f2
 
 
d0d54d8
f2d3f43
ffd4428
d2b35f2
 
ffd4428
d2b35f2
ffd4428
d2b35f2
 
 
ebd8530
993705a
ebd8530
3319852
577ffe8
ebd8530
eb76bbd
ebd8530
e119c7e
 
f2d3f43
f7d8d92
eb76bbd
e119c7e
 
ebd8530
 
 
 
e119c7e
ebd8530
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st

# Use a pipeline as a high-level helper
from transformers import pipeline

toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic")  
    

# text2story
def text2story(text):
    pipe = pipeline("text-generation", model="distilbert/distilgpt2")
    tweet_text = pipe(text)[0]['generated_text']
    return tweet_text

# text2audio
def text2audio(toxic_result):
    pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
    audio_data = pipe(toxic_result)
    return audio_data



st.set_page_config(page_title="Generate Your Tweet and Toxicity Analysis")

st.header("Please input your first word of a Tweet :performing_arts:")
input = st.text_input("In put your first word...")

if input is not None:

    #Stage 1: Input to Tweet
    st.text('Generating a Tweet...')
    tweet = text2story(input)
    st.write(tweet)
    
    #Stage 2: Tweet Toxicity Analysis
    


    #Stage 3: Story to Audio data
    st.text('Generating audio data...')
    audio_data =text2audio(tweet)

    # Play button
    if st.button("Play Audio"):
        st.audio(audio_data['audio'],
                    format="audio/wav",
                    start_time=0,
                    sample_rate = audio_data['sampling_rate'])