import streamlit as st # Use a pipeline as a high-level helper from transformers import pipeline toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic") st.set_page_config(page_title="Tweet Toxicity Analysis") st.header("Please input your Tweet for Toxicity Analysis :performing_arts:") input = st.text_area("Enter a Tweer for analysis") result = toxic_model(input) # Display the classification result max_score = float('-inf') max_label = '' for result in results: if result['score'] > max_score: max_score = result['score'] max_label = result['label'] st.write("Tweet:", input) st.write("Label:", max_label) st.write("Score:", max_score)