import streamlit as st # Use a pipeline as a high-level helper from transformers import pipeline toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic") # text2story def text2story(text): pipe = pipeline("text-generation", model="distilbert/distilgpt2") tweet_text = pipe(text)[0]['generated_text'] return tweet_text # text2audio def text2audio(toxic_result): pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") audio_data = pipe(toxic_result) return audio_data st.set_page_config(page_title="Generate Your Tweet and Toxicity Analysis") st.header("Please input your first word of a Tweet :performing_arts:") input = st.text_input("In put your first word...") if input is not None: #Stage 1: Input to Tweet st.text('Generating a Tweet...') tweet = text2story(input) st.write(tweet) #Stage 2: Tweet Toxicity Analysis #Stage 3: Story to Audio data st.text('Generating audio data...') audio_data =text2audio(tweet) # Play button if st.button("Play Audio"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate'])