|
import gradio as gr |
|
import torch |
|
from transformers import DebertaV2Model, DebertaV2Config, AutoTokenizer, PreTrainedModel |
|
from transformers.models.deberta.modeling_deberta import ContextPooler |
|
from transformers import pipeline |
|
import torch.nn as nn |
|
|
|
|
|
model_card = "microsoft/mdeberta-v3-base" |
|
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual" |
|
|
|
|
|
class CustomModel(PreTrainedModel): |
|
config_class = DebertaV2Config |
|
|
|
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
self.deberta = DebertaV2Model(config) |
|
self.pooler = ContextPooler(config) |
|
output_dim = self.pooler.output_dim |
|
self.dropout = nn.Dropout(0.1) |
|
|
|
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels) |
|
|
|
def forward(self, input_ids, positive, neutral, negative, attention_mask=None, labels=None): |
|
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask) |
|
|
|
encoder_layer = outputs[0] |
|
pooled_output = self.pooler(encoder_layer) |
|
|
|
|
|
sentiment_features = torch.stack((positive, neutral, negative), dim=1) |
|
|
|
|
|
combined_features = torch.cat((pooled_output, sentiment_features), dim=1) |
|
|
|
|
|
logits = self.classifier(self.dropout(combined_features)) |
|
|
|
return {'logits': logits} |
|
|
|
|
|
def load_tokenizer(model_name: str): |
|
return AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
def load_model(model_card: str, finetuned_model: str): |
|
tokenizer = AutoTokenizer.from_pretrained(model_card) |
|
|
|
config = DebertaV2Config.from_pretrained( |
|
finetuned_model, |
|
num_labels=2, |
|
id2label={0: 'OBJ', 1: 'SUBJ'}, |
|
label2id={'OBJ': 0, 'SUBJ': 1}, |
|
output_attentions=False, |
|
output_hidden_states=False |
|
) |
|
|
|
model = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(finetuned_model) |
|
|
|
return model |
|
|
|
|
|
def get_sentiment_values(text: str): |
|
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None) |
|
sentiments = pipe(text)[0] |
|
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]} |
|
|
|
|
|
def predict_subjectivity(text): |
|
sentiment_values = get_sentiment_values(text) |
|
|
|
model = load_model(model_card, finetuned_model) |
|
tokenizer = load_tokenizer(model_card) |
|
|
|
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt') |
|
|
|
outputs = model(**inputs) |
|
logits = outputs.get('logits') |
|
|
|
predicted_class_idx = logits.argmax().item() |
|
predicted_class = model.config.id2label[predicted_class_idx] |
|
|
|
return predicted_class |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict_subjectivity, |
|
inputs=gr.Textbox( |
|
label='Input sentence', |
|
placeholder='Enter a sentence from a news article', |
|
info='Paste a sentence from a news article to determine if it is subjective or objective.' |
|
), |
|
outputs=gr.Text( |
|
label="Prediction", |
|
info="Whether the sentence is subjective or objective." |
|
), |
|
title='Subjectivity Detection', |
|
description='Detect if a sentence is subjective or objective using a pre-trained model.', |
|
theme='huggingface', |
|
) |
|
|
|
|
|
demo.launch() |