MatteoFasulo's picture
Update app.py
13f2506 verified
raw
history blame
6.47 kB
import gradio as gr
import torch
from transformers import DebertaV2Model, DebertaV2Config, AutoTokenizer, PreTrainedModel
from transformers.models.deberta.modeling_deberta import ContextPooler
from transformers import pipeline, AutoModelForSequenceClassification
import torch.nn as nn
# Define the model and tokenizer
model_card = "microsoft/mdeberta-v3-base"
subjectivity_only_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic"
sentiment_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic"
# Define some examples for the Gradio interface (cached to run on-the-fly)
examples = [
['Example1'],
['Example2'],
['Example3'],
]
# Custom model class for combining sentiment analysis with subjectivity detection
class CustomModel(PreTrainedModel):
config_class = DebertaV2Config
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None):
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
# Sentiment features as a single tensor
sentiment_features = torch.stack((positive, neutral, negative), dim=1) # Shape: (batch_size, 3)
# Combine CLS embedding with sentiment features
combined_features = torch.cat((pooled_output, sentiment_features), dim=1)
# Classification head
logits = self.classifier(self.dropout(combined_features))
return {'logits': logits}
# Load the pre-trained tokenizer
def load_tokenizer(model_name: str):
return AutoTokenizer.from_pretrained(model_name)
# Load the pre-trained model
def load_model(model_name: str):
if 'sentiment' in model_name:
config = DebertaV2Config.from_pretrained(
model_name,
num_labels=2,
id2label={0: 'OBJ', 1: 'SUBJ'},
label2id={'OBJ': 0, 'SUBJ': 1},
output_attentions=False,
output_hidden_states=False
)
model = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(model_name)
else:
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=2,
id2label={0: 'OBJ', 1: 'SUBJ'},
label2id={'OBJ': 0, 'SUBJ': 1},
output_attentions=False,
output_hidden_states=False
)
return model
# Get sentiment values using a pre-trained sentiment analysis model
def get_sentiment_values(text: str):
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None)
sentiments = pipe(text)[0]
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
# Modify the predict_subjectivity function to return additional information
def analyze(text):
# Extract sentiment values
sentiment_values = get_sentiment_values(text)
# Load the tokenizer and model
tokenizer = load_tokenizer(model_card)
sentiment_model = load_model(sentiment_model)
subjectivity_model = load_model(subjectivity_only_model)
# Tokenize
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
# Get the sentiment values
positive = sentiment_values['positive']
neutral = sentiment_values['neutral']
negative = sentiment_values['negative']
# Convert sentiment values to tensors
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
# Get the sentiment model outputs
outputs1 = sentiment_model(**inputs)
logits1 = outputs1.get('logits')
# Calculate probabilities using softmax
p1 = torch.nn.functional.softmax(logits1, dim=1)[0]
# Get the subjectivity model outputs
outputs2 = subjectivity_model(**inputs)
logits2 = outputs2.get('logits')
# Calculate probabilities using softmax
p2 = torch.nn.functional.softmax(logits2, dim=1)[0]
# Format the output
return {
'Positive': f"{positive:.2%}", 'Neutral': f"{neutral:.2%}", 'Negative': f"{negative:.2%}",
'Sent-Subj OBJ': f"{p1[0]:.2%}", 'Sent-Subj SUBJ': f"{p1[1]:.2%}",
'TextOnly OBJ': f"{p2[0]:.2%}", 'TextOnly SUBJ': f"{p2[1]:.2%}"
}
# Update the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css="""
#result_table td { padding: 8px; font-size: 1rem; }
#header { text-align: center; font-size: 2rem; font-weight: bold; margin-bottom: 10px; }
""") as demo:
gr.Markdown("<div id='header'>πŸš€ Advanced Subjectivity & Sentiment Dashboard πŸš€</div>")
with gr.Row():
txt = gr.Textbox(label="Enter text to analyze", placeholder="Paste news sentence here...", lines=2)
btn = gr.Button("Analyze πŸ”", variant="primary")
with gr.Tabs():
with gr.TabItem("Overview πŸ“Š"):
chart = gr.BarPlot(x="category", y="value", label="Results", elem_id="result_chart")
with gr.TabItem("Raw Scores πŸ“‹"):
table = gr.Dataframe(headers=["Metric", "Value"], datatype=["str","str"], interactive=False, elem_id="result_table")
with gr.TabItem("About ℹ️"):
gr.Markdown("This dashboard uses two DeBERTa-based models (with and without sentiment integration) to detect subjectivity, alongside sentiment scores from an XLM-RoBERTa model.")
with gr.Row():
gr.Markdown("### Examples:")
gr.Examples(
examples=examples,
inputs=txt,
outputs=[chart, table],
fn=analyze,
label="Examples",
elem_id="example_list",
cache_examples=True,
)
# Link inputs to outputs
btn.click(fn=analyze, inputs=txt, outputs=[chart, table])
demo.queue().launch(server_name="0.0.0.0", share=True)