|
import gradio as gr |
|
import torch |
|
from transformers import DebertaV2Model, DebertaV2Config, AutoTokenizer, PreTrainedModel |
|
from transformers.models.deberta.modeling_deberta import ContextPooler |
|
from transformers import pipeline, AutoModelForSequenceClassification |
|
import torch.nn as nn |
|
|
|
|
|
model_card = "microsoft/mdeberta-v3-base" |
|
subjectivity_only_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic" |
|
sentiment_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic" |
|
|
|
|
|
examples = [ |
|
["But then Trump came to power and sidelined the defense hawks, ushering in a dramatic shift in Republican sentiment toward America's allies and adversaries."], |
|
["Boxing Day ambush & flagship attack Putin has long tried to downplay the true losses his army has faced in the Black Sea."], |
|
] |
|
|
|
class CustomModel(PreTrainedModel): |
|
config_class = DebertaV2Config |
|
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
self.deberta = DebertaV2Model(config) |
|
self.pooler = ContextPooler(config) |
|
output_dim = self.pooler.output_dim |
|
self.dropout = nn.Dropout(0.1) |
|
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels) |
|
|
|
def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None): |
|
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask) |
|
encoder_layer = outputs[0] |
|
pooled_output = self.pooler(encoder_layer) |
|
sentiment_features = torch.stack((positive, neutral, negative), dim=1).to(pooled_output.dtype) |
|
combined_features = torch.cat((pooled_output, sentiment_features), dim=1) |
|
logits = self.classifier(self.dropout(combined_features)) |
|
return {'logits': logits} |
|
|
|
def load_tokenizer(model_name: str): |
|
return AutoTokenizer.from_pretrained(model_name) |
|
|
|
load_model_cache = {} |
|
def load_model(model_name: str): |
|
if model_name not in load_model_cache: |
|
print(f"Loading model: {model_name}") |
|
if 'sentiment' in model_name: |
|
config = DebertaV2Config.from_pretrained( |
|
model_name, num_labels=2, id2label={0: 'OBJ', 1: 'SUBJ'}, label2id={'OBJ': 0, 'SUBJ': 1}, |
|
output_attentions=False, output_hidden_states=False |
|
) |
|
model_instance = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(model_name) |
|
else: |
|
model_instance = AutoModelForSequenceClassification.from_pretrained( |
|
model_name, num_labels=2, id2label={0: 'OBJ', 1: 'SUBJ'}, label2id={'OBJ': 0, 'SUBJ': 1}, |
|
output_attentions=False, output_hidden_states=False |
|
) |
|
load_model_cache[model_name] = model_instance |
|
return load_model_cache[model_name] |
|
|
|
sentiment_pipeline_cache = None |
|
def get_sentiment_values(text: str): |
|
global sentiment_pipeline_cache |
|
if sentiment_pipeline_cache is None: |
|
print("Loading sentiment pipeline...") |
|
sentiment_pipeline_cache = pipeline( |
|
"sentiment-analysis", |
|
model="cardiffnlp/twitter-xlm-roberta-base-sentiment", |
|
tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", |
|
top_k=None |
|
) |
|
sentiments_output = sentiment_pipeline_cache(text) |
|
if sentiments_output and isinstance(sentiments_output, list) and sentiments_output[0]: |
|
sentiments = sentiments_output[0] |
|
return {s['label'].lower(): s['score'] for s in sentiments} |
|
return {} |
|
|
|
|
|
def analyze(text): |
|
if not text or not text.strip(): |
|
empty_data = [ |
|
["Positive", ""], ["Neutral", ""], ["Negative", ""], |
|
["Sent-Subj OBJ", ""], ["Sent-Subj SUBJ", ""], |
|
["TextOnly OBJ", ""], ["TextOnly SUBJ", ""] |
|
] |
|
return empty_data |
|
|
|
sentiment_values = get_sentiment_values(text) |
|
tokenizer = load_tokenizer(model_card) |
|
model_with_sentiment = load_model(sentiment_model) |
|
model_without_sentiment = load_model(subjectivity_only_model) |
|
|
|
inputs_dict = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt') |
|
|
|
device = next(model_without_sentiment.parameters()).device |
|
inputs_dict_on_device = {k: v.to(device) for k, v in inputs_dict.items()} |
|
|
|
outputs_base = model_without_sentiment(**inputs_dict_on_device) |
|
logits_base = outputs_base.get('logits') |
|
prob_base = torch.nn.functional.softmax(logits_base, dim=1)[0] |
|
|
|
positive = sentiment_values.get('positive', 0.0) |
|
neutral = sentiment_values.get('neutral', 0.0) |
|
negative = sentiment_values.get('negative', 0.0) |
|
|
|
|
|
current_inputs_for_sentiment_model = inputs_dict_on_device.copy() |
|
current_inputs_for_sentiment_model['positive'] = torch.tensor(positive, device=device).unsqueeze(0).float() |
|
current_inputs_for_sentiment_model['neutral'] = torch.tensor(neutral, device=device).unsqueeze(0).float() |
|
current_inputs_for_sentiment_model['negative'] = torch.tensor(negative, device=device).unsqueeze(0).float() |
|
|
|
|
|
outputs_sentiment = model_with_sentiment(**current_inputs_for_sentiment_model) |
|
logits_sentiment = outputs_sentiment.get('logits') |
|
prob_sentiment = torch.nn.functional.softmax(logits_sentiment, dim=1)[0] |
|
|
|
table_data = [ |
|
["Positive", f"{positive:.2%}"], |
|
["Neutral", f"{neutral:.2%}"], |
|
["Negative", f"{negative:.2%}"], |
|
["Sent-Subj OBJ", f"{prob_sentiment[0]:.2%}"], |
|
["Sent-Subj SUBJ", f"{prob_sentiment[1]:.2%}"], |
|
["TextOnly OBJ", f"{prob_base[0]:.2%}"], |
|
["TextOnly SUBJ", f"{prob_base[1]:.2%}"] |
|
] |
|
return table_data |
|
|
|
def load_default_example_on_startup(): |
|
print("Loading default example on startup...") |
|
if examples and examples[0] and isinstance(examples[0], list) and examples[0]: |
|
default_text = examples[0][0] |
|
default_analysis_results = analyze(default_text) |
|
return default_text, default_analysis_results |
|
print("Warning: No valid default example found. Loading empty.") |
|
empty_text = "" |
|
empty_results = analyze(empty_text) |
|
return empty_text, empty_results |
|
|
|
with gr.Blocks(theme=gr.themes.Ocean(), title="Subjectivity & Sentiment Dashboard") as demo: |
|
gr.Markdown("# π Subjectivity & Sentiment Analysis Dashboard π") |
|
|
|
with gr.Column(): |
|
txt = gr.Textbox( |
|
label="Enter text to analyze", |
|
placeholder="Paste news sentence here...", |
|
lines=2, |
|
) |
|
with gr.Row(): |
|
gr.Column(scale=1, min_width=0) |
|
btn = gr.Button( |
|
"Analyze π", |
|
variant="primary", |
|
size="md", |
|
scale=0 |
|
) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Raw Scores π"): |
|
table = gr.Dataframe( |
|
headers=["Metric", "Value"], |
|
datatype=["str", "str"], |
|
interactive=False |
|
) |
|
with gr.TabItem("About βΉοΈ"): |
|
gr.Markdown( |
|
"This dashboard uses two DeBERTa-based models (with and without sentiment integration) " |
|
"to detect subjectivity, alongside sentiment scores from an XLM-RoBERTa model." |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("### Examples:") |
|
|
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=txt, |
|
outputs=[table], |
|
fn=analyze, |
|
label="Click an example to analyze", |
|
cache_examples=True, |
|
) |
|
|
|
btn.click(fn=analyze, inputs=txt, outputs=[table]) |
|
|
|
|
|
demo.load( |
|
fn=load_default_example_on_startup, |
|
inputs=None, |
|
outputs=[txt, table] |
|
) |
|
|
|
demo.queue().launch(share=True) |