Update with class probabilities of models with and without sentiment
Browse files
app.py
CHANGED
@@ -5,128 +5,133 @@ from transformers.models.deberta.modeling_deberta import ContextPooler
|
|
5 |
from transformers import pipeline
|
6 |
import torch.nn as nn
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
11 |
THRESHOLD = 0.65
|
12 |
|
13 |
-
# Custom model
|
14 |
class CustomModel(PreTrainedModel):
|
15 |
config_class = DebertaV2Config
|
16 |
|
17 |
-
def __init__(self, config, sentiment_dim=
|
18 |
super().__init__(config, *args, **kwargs)
|
19 |
self.deberta = DebertaV2Model(config)
|
20 |
self.pooler = ContextPooler(config)
|
21 |
output_dim = self.pooler.output_dim
|
22 |
self.dropout = nn.Dropout(0.1)
|
23 |
-
|
24 |
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
25 |
|
26 |
-
def forward(self, input_ids,
|
|
|
27 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
def load_tokenizer(model_name: str):
|
45 |
-
return AutoTokenizer.from_pretrained(model_name)
|
46 |
-
|
47 |
-
# Load the pre-trained model
|
48 |
-
def load_model(model_card: str, finetuned_model: str):
|
49 |
-
tokenizer = AutoTokenizer.from_pretrained(model_card)
|
50 |
-
|
51 |
-
config = DebertaV2Config.from_pretrained(
|
52 |
-
finetuned_model,
|
53 |
num_labels=2,
|
54 |
id2label={0: 'OBJ', 1: 'SUBJ'},
|
55 |
label2id={'OBJ': 0, 'SUBJ': 1},
|
56 |
output_attentions=False,
|
57 |
output_hidden_states=False
|
58 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
return
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
sentiments = pipe(text)[0]
|
68 |
-
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
|
69 |
|
70 |
-
# Modify the predict_subjectivity function to return additional information
|
71 |
def predict_subjectivity(text):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
tokenizer = load_tokenizer(model_card)
|
76 |
-
|
77 |
-
positive = sentiment_values['positive']
|
78 |
-
neutral = sentiment_values['neutral']
|
79 |
-
negative = sentiment_values['negative']
|
80 |
|
|
|
81 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
82 |
-
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
|
83 |
-
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
|
84 |
-
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
96 |
|
97 |
-
#
|
98 |
-
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
-
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
-
|
106 |
-
- Neutral: {neutral:.2%}
|
107 |
-
- Negative: {negative:.2%}"""
|
108 |
|
109 |
-
return
|
110 |
|
111 |
-
#
|
112 |
demo = gr.Interface(
|
113 |
-
fn=predict_subjectivity,
|
114 |
inputs=gr.Textbox(
|
115 |
label='Input sentence',
|
116 |
placeholder='Enter a sentence from a news article',
|
117 |
-
info='Paste a sentence from a news article to determine
|
118 |
),
|
119 |
outputs=gr.Textbox(
|
120 |
-
label=
|
121 |
-
info=
|
122 |
),
|
123 |
-
title='Subjectivity Detection',
|
124 |
-
description='
|
125 |
-
examples=[
|
126 |
-
['Nino Frassica, la moglie fuori controllo: "Fottiti in c***! Muori".'],
|
127 |
-
['Nino Frassica, la moglie fuori controllo dice fottiti in c***! Muori.'],
|
128 |
-
],
|
129 |
-
cache_examples=True,
|
130 |
)
|
131 |
|
132 |
demo.launch()
|
|
|
5 |
from transformers import pipeline
|
6 |
import torch.nn as nn
|
7 |
|
8 |
+
# Model cards and thresholds
|
9 |
+
BASE_MODEL = "microsoft/mdeberta-v3-base"
|
10 |
+
SENT_SUBJ_MODEL = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic"
|
11 |
+
SUBJ_ONLY_MODEL = "MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic"
|
12 |
THRESHOLD = 0.65
|
13 |
|
14 |
+
# Custom model for subjectivity (+ optional sentiment features)
|
15 |
class CustomModel(PreTrainedModel):
|
16 |
config_class = DebertaV2Config
|
17 |
|
18 |
+
def __init__(self, config, sentiment_dim=0, num_labels=2, *args, **kwargs):
|
19 |
super().__init__(config, *args, **kwargs)
|
20 |
self.deberta = DebertaV2Model(config)
|
21 |
self.pooler = ContextPooler(config)
|
22 |
output_dim = self.pooler.output_dim
|
23 |
self.dropout = nn.Dropout(0.1)
|
|
|
24 |
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
25 |
|
26 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
|
27 |
+
positive=None, neutral=None, negative=None):
|
28 |
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
29 |
+
pooled = self.pooler(outputs[0])
|
30 |
+
if positive is not None and neutral is not None and negative is not None:
|
31 |
+
sent_feats = torch.stack((positive, neutral, negative), dim=1)
|
32 |
+
combined = torch.cat((pooled, sent_feats), dim=1)
|
33 |
+
else:
|
34 |
+
combined = pooled
|
35 |
+
logits = self.classifier(self.dropout(combined))
|
36 |
+
return logits
|
37 |
+
|
38 |
+
# Load tokenizer and model helper
|
39 |
+
def load_models():
|
40 |
+
# Tokenizer shared
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
42 |
+
# Sentiment+Subjectivity model
|
43 |
+
cfg1 = DebertaV2Config.from_pretrained(
|
44 |
+
SENT_SUBJ_MODEL,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
num_labels=2,
|
46 |
id2label={0: 'OBJ', 1: 'SUBJ'},
|
47 |
label2id={'OBJ': 0, 'SUBJ': 1},
|
48 |
output_attentions=False,
|
49 |
output_hidden_states=False
|
50 |
)
|
51 |
+
model1 = CustomModel(config=cfg1, sentiment_dim=3)
|
52 |
+
model1 = model1.from_pretrained(SENT_SUBJ_MODEL)
|
53 |
+
# Subjectivity-only model
|
54 |
+
cfg2 = DebertaV2Config.from_pretrained(
|
55 |
+
SUBJ_ONLY_MODEL,
|
56 |
+
num_labels=2,
|
57 |
+
id2label={0: 'OBJ', 1: 'SUBJ'},
|
58 |
+
label2id={'OBJ': 0, 'SUBJ': 1},
|
59 |
+
output_attentions=False,
|
60 |
+
output_hidden_states=False
|
61 |
+
)
|
62 |
+
model2 = CustomModel(config=cfg2, sentiment_dim=0)
|
63 |
+
model2 = model2.from_pretrained(SUBJ_ONLY_MODEL)
|
64 |
+
return tokenizer, model1, model2
|
65 |
+
|
66 |
+
# Sentiment pipeline
|
67 |
+
sentiment_pipe = pipeline(
|
68 |
+
"sentiment-analysis",
|
69 |
+
model="cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
70 |
+
tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment",
|
71 |
+
top_k=None
|
72 |
+
)
|
73 |
|
74 |
+
def get_sentiment_scores(text: str):
|
75 |
+
results = sentiment_pipe(text)[0]
|
76 |
+
return {lbl: score for lbl, score in [(list(d.keys())[0], list(d.values())[0]) for d in results]}
|
77 |
|
78 |
+
# Prediction function
|
79 |
+
# Caches models on first call
|
80 |
+
tokenizer, model_sent_subj, model_subj_only = None, None, None
|
|
|
|
|
81 |
|
|
|
82 |
def predict_subjectivity(text):
|
83 |
+
global tokenizer, model_sent_subj, model_subj_only
|
84 |
+
if tokenizer is None:
|
85 |
+
tokenizer, model_sent_subj, model_subj_only = load_models()
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Tokenize input
|
88 |
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
|
|
|
|
|
|
89 |
|
90 |
+
# Sentiment + subjectivity model inference
|
91 |
+
sent_scores = get_sentiment_scores(text)
|
92 |
+
pos, neu, neg = sent_scores['positive'], sent_scores['neutral'], sent_scores['negative']
|
93 |
+
logits1 = model_sent_subj(
|
94 |
+
input_ids=inputs['input_ids'],
|
95 |
+
attention_mask=inputs.get('attention_mask'),
|
96 |
+
positive=torch.tensor([pos]),
|
97 |
+
neutral=torch.tensor([neu]),
|
98 |
+
negative=torch.tensor([neg])
|
99 |
+
)
|
100 |
+
probs1 = torch.softmax(logits1, dim=1)[0]
|
101 |
|
102 |
+
# Subjectivity-only model inference
|
103 |
+
logits2 = model_subj_only(
|
104 |
+
input_ids=inputs['input_ids'],
|
105 |
+
attention_mask=inputs.get('attention_mask')
|
106 |
+
)
|
107 |
+
probs2 = torch.softmax(logits2, dim=1)[0]
|
108 |
|
109 |
+
# Formatting
|
110 |
+
output = []
|
111 |
+
output.append("Sentiment Scores (sent-subj model):")
|
112 |
+
output.append(f"- Positive: {pos:.2%}")
|
113 |
+
output.append(f"- Neutral: {neu:.2%}")
|
114 |
+
output.append(f"- Negative: {neg:.2%}\n")
|
115 |
|
116 |
+
output.append(f"Subjectivity (with sentiment) - OBJ: {probs1[0]:.2%}, SUBJ: {probs1[1]:.2%}")
|
117 |
+
output.append(f"Subjectivity (text only) - OBJ: {probs2[0]:.2%}, SUBJ: {probs2[1]:.2%}")
|
|
|
|
|
118 |
|
119 |
+
return "\n".join(output)
|
120 |
|
121 |
+
# Build Gradio interface
|
122 |
demo = gr.Interface(
|
123 |
+
fn=predict_subjectivity,
|
124 |
inputs=gr.Textbox(
|
125 |
label='Input sentence',
|
126 |
placeholder='Enter a sentence from a news article',
|
127 |
+
info='Paste a sentence from a news article to determine subjectivity'
|
128 |
),
|
129 |
outputs=gr.Textbox(
|
130 |
+
label='Results',
|
131 |
+
info='Sentiment & dual-model subjectivity probabilities'
|
132 |
),
|
133 |
+
title='Dual-Model Subjectivity Detection',
|
134 |
+
description='Outputs sentiment scores and class probabilities from two subjectivity models.'
|
|
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
|
137 |
demo.launch()
|