Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -125,7 +125,24 @@ def clear_context():
|
|
125 |
# Predetermined Prompts
|
126 |
# -------------------------------
|
127 |
predetermined_prompts = {
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
"Software Tester": (
|
130 |
"Act as a software tester. Analyze the uploaded image of a software interface and generate comprehensive "
|
131 |
"test cases for its features. For each feature, provide test steps, expected results, and any necessary "
|
@@ -138,10 +155,14 @@ predetermined_prompts = {
|
|
138 |
# -------------------------------
|
139 |
def chat_respond(user_message, history, prompt_option):
|
140 |
"""
|
141 |
-
Append the user message to the conversation history, call the API,
|
|
|
|
|
|
|
|
|
142 |
The conversation history is a list of [user_text, assistant_text] pairs.
|
143 |
"""
|
144 |
-
#
|
145 |
if history == []:
|
146 |
if not user_message.strip():
|
147 |
user_message = predetermined_prompts.get(prompt_option, "Hello")
|
@@ -150,47 +171,42 @@ def chat_respond(user_message, history, prompt_option):
|
|
150 |
|
151 |
history = history + [[user_message, ""]]
|
152 |
|
153 |
-
# Build the messages list for the multimodal API
|
154 |
messages = []
|
|
|
155 |
for i, (user_msg, assistant_msg) in enumerate(history):
|
156 |
-
|
157 |
-
# For the very first message, attach the image (if available)
|
158 |
if i == 0 and doc_state.current_doc_images:
|
159 |
buffered = io.BytesIO()
|
160 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
161 |
img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
162 |
data_uri = f"data:image/png;base64,{img_b64}"
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
messages.append({"role": "user", "content": user_content})
|
168 |
if assistant_msg:
|
169 |
-
messages.append({
|
170 |
-
"role": "assistant",
|
171 |
-
"content": [{"type": "text", "text": assistant_msg}]
|
172 |
-
})
|
173 |
|
174 |
-
# Call the API (using stream=True internally but waiting for the full response)
|
175 |
try:
|
176 |
-
|
177 |
-
|
|
|
178 |
messages=messages,
|
179 |
-
max_tokens=
|
180 |
-
stream=True
|
181 |
)
|
182 |
except Exception as e:
|
183 |
logger.error(f"Error calling the API: {str(e)}")
|
184 |
history[-1][1] = "An error occurred while processing your request. Please check your API credentials."
|
185 |
return history, history
|
186 |
|
187 |
-
#
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
192 |
|
193 |
-
history[-1][1] =
|
194 |
return history, history
|
195 |
|
196 |
# -------------------------------
|
@@ -215,14 +231,17 @@ with gr.Blocks() as demo:
|
|
215 |
prompt_dropdown = gr.Dropdown(
|
216 |
label="Select Prompt",
|
217 |
choices=[
|
218 |
-
|
|
|
|
|
|
|
219 |
"Software Tester"
|
220 |
],
|
221 |
value="Software Tester"
|
222 |
)
|
223 |
clear_btn = gr.Button("Clear Document Context & Chat History")
|
224 |
|
225 |
-
# Set type='messages' to avoid deprecation warnings
|
226 |
chatbot = gr.Chatbot(label="Chat History", type="messages", elem_id="chatbot")
|
227 |
|
228 |
with gr.Row():
|
|
|
125 |
# Predetermined Prompts
|
126 |
# -------------------------------
|
127 |
predetermined_prompts = {
|
128 |
+
"NOC Timesheet": (
|
129 |
+
"Extract structured information from the provided timesheet. The extracted details should include:\n"
|
130 |
+
"Name, Position Title, Work Location, Contractor, NOC ID, Month and Year, Regular Service Days, "
|
131 |
+
"Standby Days, Offshore Days, Extended Hitch Days, and approvals. Format the output as valid JSON."
|
132 |
+
),
|
133 |
+
"Aramco Full structured": (
|
134 |
+
"You are a document parsing assistant designed to extract structured data from various documents such as "
|
135 |
+
"invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text."
|
136 |
+
),
|
137 |
+
"Aramco Timesheet only": (
|
138 |
+
"Extract time tracking, work details, and approvals. Return a JSON object following the specified structure."
|
139 |
+
),
|
140 |
+
"NOC Invoice": (
|
141 |
+
"You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data "
|
142 |
+
"into the following JSON format:\n"
|
143 |
+
"{\n 'invoiceDetails': { ... },\n 'from': { ... },\n 'to': { ... },\n 'services': [ ... ],\n "
|
144 |
+
"'totals': { ... },\n 'bankDetails': { ... }\n}"
|
145 |
+
),
|
146 |
"Software Tester": (
|
147 |
"Act as a software tester. Analyze the uploaded image of a software interface and generate comprehensive "
|
148 |
"test cases for its features. For each feature, provide test steps, expected results, and any necessary "
|
|
|
155 |
# -------------------------------
|
156 |
def chat_respond(user_message, history, prompt_option):
|
157 |
"""
|
158 |
+
Append the user message to the conversation history, call the API,
|
159 |
+
and return the full response.
|
160 |
+
|
161 |
+
Each message passed to the API is now a dictionary with a string value for 'content'.
|
162 |
+
If an image was uploaded, its data URI is appended to the first user message.
|
163 |
The conversation history is a list of [user_text, assistant_text] pairs.
|
164 |
"""
|
165 |
+
# On the first message, if none is provided, use the predetermined prompt.
|
166 |
if history == []:
|
167 |
if not user_message.strip():
|
168 |
user_message = predetermined_prompts.get(prompt_option, "Hello")
|
|
|
171 |
|
172 |
history = history + [[user_message, ""]]
|
173 |
|
|
|
174 |
messages = []
|
175 |
+
# Build the messages list with each message as a dictionary containing role and a string content.
|
176 |
for i, (user_msg, assistant_msg) in enumerate(history):
|
177 |
+
# For the very first user message, attach the image (if available) by appending its data URI.
|
|
|
178 |
if i == 0 and doc_state.current_doc_images:
|
179 |
buffered = io.BytesIO()
|
180 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
181 |
img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
182 |
data_uri = f"data:image/png;base64,{img_b64}"
|
183 |
+
text_to_send = user_msg + "\n[Attached Image: " + data_uri + "]"
|
184 |
+
else:
|
185 |
+
text_to_send = user_msg
|
186 |
+
messages.append({"role": "user", "content": text_to_send})
|
|
|
187 |
if assistant_msg:
|
188 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
|
|
|
|
189 |
|
|
|
190 |
try:
|
191 |
+
# Call the API without streaming. The messages are now standard dictionaries.
|
192 |
+
response = client.chat.completions.create(
|
193 |
+
model="qwen/qwen-vl-plus:free",
|
194 |
messages=messages,
|
195 |
+
max_tokens=500
|
|
|
196 |
)
|
197 |
except Exception as e:
|
198 |
logger.error(f"Error calling the API: {str(e)}")
|
199 |
history[-1][1] = "An error occurred while processing your request. Please check your API credentials."
|
200 |
return history, history
|
201 |
|
202 |
+
# Assuming the API returns a standard completion response, extract the assistant's reply.
|
203 |
+
try:
|
204 |
+
full_response = response.choices[0].message["content"]
|
205 |
+
except Exception as e:
|
206 |
+
logger.error(f"Error extracting API response: {str(e)}")
|
207 |
+
full_response = "An error occurred while processing the API response."
|
208 |
|
209 |
+
history[-1][1] = full_response
|
210 |
return history, history
|
211 |
|
212 |
# -------------------------------
|
|
|
231 |
prompt_dropdown = gr.Dropdown(
|
232 |
label="Select Prompt",
|
233 |
choices=[
|
234 |
+
"NOC Timesheet",
|
235 |
+
"Aramco Full structured",
|
236 |
+
"Aramco Timesheet only",
|
237 |
+
"NOC Invoice",
|
238 |
"Software Tester"
|
239 |
],
|
240 |
value="Software Tester"
|
241 |
)
|
242 |
clear_btn = gr.Button("Clear Document Context & Chat History")
|
243 |
|
244 |
+
# Set type='messages' to avoid deprecation warnings.
|
245 |
chatbot = gr.Chatbot(label="Chat History", type="messages", elem_id="chatbot")
|
246 |
|
247 |
with gr.Row():
|