Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,28 @@
|
|
| 1 |
-
import
|
| 2 |
-
import base64
|
| 3 |
import io
|
| 4 |
import time
|
|
|
|
| 5 |
import logging
|
| 6 |
import fitz # PyMuPDF
|
| 7 |
from PIL import Image
|
| 8 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Set up logging
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
-
import os
|
| 15 |
-
OPENROUTER_API_KEY = os.getenv("OPENAI_TOKEN")
|
| 16 |
-
if not OPENROUTER_API_KEY:
|
| 17 |
-
raise ValueError("OPENROUTER_API_KEY environment variable not set")
|
| 18 |
-
openai.api_key = OPENROUTER_API_KEY
|
| 19 |
-
|
| 20 |
-
# Configure the OpenAI API to use OpenRouter
|
| 21 |
-
openai.api_base = "https://openrouter.ai/api/v1"
|
| 22 |
-
openai.api_key = OPENROUTER_API_KEY
|
| 23 |
-
|
| 24 |
# -------------------------------
|
| 25 |
# Document State and File Processing
|
| 26 |
# -------------------------------
|
|
@@ -38,7 +40,7 @@ class DocumentState:
|
|
| 38 |
doc_state = DocumentState()
|
| 39 |
|
| 40 |
def process_pdf_file(file_path):
|
| 41 |
-
"""Convert PDF to images and extract text using PyMuPDF."""
|
| 42 |
try:
|
| 43 |
doc = fitz.open(file_path)
|
| 44 |
images = []
|
|
@@ -50,13 +52,12 @@ def process_pdf_file(file_path):
|
|
| 50 |
if page_text.strip():
|
| 51 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
| 52 |
|
| 53 |
-
# Render page
|
| 54 |
zoom = 3
|
| 55 |
mat = fitz.Matrix(zoom, zoom)
|
| 56 |
pix = page.get_pixmap(matrix=mat, alpha=False)
|
| 57 |
img_data = pix.tobytes("png")
|
| 58 |
-
img = Image.open(io.BytesIO(img_data))
|
| 59 |
-
img = img.convert("RGB")
|
| 60 |
|
| 61 |
# Resize if image is too large
|
| 62 |
max_size = 1600
|
|
@@ -64,7 +65,6 @@ def process_pdf_file(file_path):
|
|
| 64 |
ratio = max_size / max(img.size)
|
| 65 |
new_size = tuple(int(dim * ratio) for dim in img.size)
|
| 66 |
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
| 67 |
-
|
| 68 |
images.append(img)
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"Error processing page {page_num}: {str(e)}")
|
|
@@ -78,13 +78,13 @@ def process_pdf_file(file_path):
|
|
| 78 |
raise
|
| 79 |
|
| 80 |
def process_uploaded_file(file):
|
| 81 |
-
"""Process uploaded file and update document state."""
|
| 82 |
try:
|
| 83 |
doc_state.clear()
|
| 84 |
if file is None:
|
| 85 |
return "No file uploaded. Please upload a file."
|
| 86 |
|
| 87 |
-
# Get the file path
|
| 88 |
if isinstance(file, dict):
|
| 89 |
file_path = file["name"]
|
| 90 |
else:
|
|
@@ -119,16 +119,17 @@ def process_uploaded_file(file):
|
|
| 119 |
return "An error occurred while processing the file. Please try again."
|
| 120 |
|
| 121 |
# -------------------------------
|
| 122 |
-
# Bot Streaming Function Using
|
| 123 |
# -------------------------------
|
| 124 |
-
def bot_streaming(prompt_option, max_new_tokens=
|
| 125 |
"""
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
| 129 |
"""
|
| 130 |
try:
|
| 131 |
-
#
|
| 132 |
prompts = {
|
| 133 |
"NOC Timesheet": (
|
| 134 |
"""Extract structured information from the provided timesheet. The extracted details should include:
|
|
@@ -173,333 +174,90 @@ Noc representative's date approval_date
|
|
| 173 |
|
| 174 |
Noc representative status as approval_status
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]} the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted."""
|
| 179 |
),
|
| 180 |
"NOC Basic": (
|
| 181 |
"Based on the provided timesheet details, extract the following information:\n"
|
| 182 |
-
" - Full name
|
| 183 |
-
" - Position title
|
| 184 |
" - Work location\n"
|
| 185 |
" - Contractor's name\n"
|
| 186 |
" - NOC ID\n"
|
| 187 |
-
" - Month and year (
|
| 188 |
),
|
| 189 |
"Aramco Full structured": (
|
| 190 |
-
"""You are a document parsing assistant designed to extract structured data from various
|
| 191 |
-
|
| 192 |
-
1. Always return ONLY valid JSON—no explanations, comments, or additional text.
|
| 193 |
-
2. Use null for any fields that are not present or cannot be extracted.
|
| 194 |
-
3. Ensure all JSON keys are enclosed in double quotes and properly formatted.
|
| 195 |
-
4. Validate financial, time tracking, and contract details carefully before output.
|
| 196 |
-
|
| 197 |
-
Extraction Instructions:
|
| 198 |
-
|
| 199 |
-
1. Invoice:
|
| 200 |
-
- Parse and extract financial and invoice-specific details.
|
| 201 |
-
- JSON structure:
|
| 202 |
-
```json
|
| 203 |
-
{
|
| 204 |
-
"invoice": {
|
| 205 |
-
"date": null,
|
| 206 |
-
"dueDate": null,
|
| 207 |
-
"accountNumber": null,
|
| 208 |
-
"invoiceNumber": null,
|
| 209 |
-
"customerContact": null,
|
| 210 |
-
"kintecContact": null,
|
| 211 |
-
"accountsContact": null,
|
| 212 |
-
"periodEnd": null,
|
| 213 |
-
"contractNo": null,
|
| 214 |
-
"specialistsName": null,
|
| 215 |
-
"rpoNumber": null,
|
| 216 |
-
"assignmentProject": null,
|
| 217 |
-
"workLocation": null,
|
| 218 |
-
"expenses": null,
|
| 219 |
-
"regularHours": null,
|
| 220 |
-
"overtime": null,
|
| 221 |
-
"mobilisationAllowance": null,
|
| 222 |
-
"dailyHousing": null,
|
| 223 |
-
"opPipTechnical": null,
|
| 224 |
-
"code": null,
|
| 225 |
-
"vatBasis": null,
|
| 226 |
-
"vatRate": null,
|
| 227 |
-
"vatAmount": null,
|
| 228 |
-
"totalExclVat": null,
|
| 229 |
-
"totalInclVat": null
|
| 230 |
-
}
|
| 231 |
-
}
|
| 232 |
-
```
|
| 233 |
-
|
| 234 |
-
2. Timesheet:
|
| 235 |
-
- Extract time tracking, work details, and approvals.
|
| 236 |
-
- JSON structure:
|
| 237 |
-
```json
|
| 238 |
-
{
|
| 239 |
-
"timesheet": {
|
| 240 |
-
"Year": null,
|
| 241 |
-
"RPO_Number": null,
|
| 242 |
-
"PMC_Name": null,
|
| 243 |
-
"Project_Location": null,
|
| 244 |
-
"Project_and_Package": null,
|
| 245 |
-
"Month": null,
|
| 246 |
-
"Timesheet_Details": [
|
| 247 |
-
{
|
| 248 |
-
"Week": null,
|
| 249 |
-
"Regular_Hours": null,
|
| 250 |
-
"Overtime_Hours": null,
|
| 251 |
-
"Total_Hours": null,
|
| 252 |
-
"Comments": null
|
| 253 |
-
},
|
| 254 |
-
{
|
| 255 |
-
"Week": null,
|
| 256 |
-
"Regular_Hours": null,
|
| 257 |
-
"Overtime_Hours": null,
|
| 258 |
-
"Total_Hours": null,
|
| 259 |
-
"Comments": null
|
| 260 |
-
}
|
| 261 |
-
],
|
| 262 |
-
"Monthly_Totals": {
|
| 263 |
-
"Regular_Hours": null,
|
| 264 |
-
"Overtime_Hours": null,
|
| 265 |
-
"Total_Hours": null
|
| 266 |
-
},
|
| 267 |
-
"reviewedBy": {
|
| 268 |
-
"name": null,
|
| 269 |
-
"position": null,
|
| 270 |
-
"date": null
|
| 271 |
-
},
|
| 272 |
-
"approvedBy": {
|
| 273 |
-
"name": null,
|
| 274 |
-
"position": null,
|
| 275 |
-
"date": null
|
| 276 |
-
}
|
| 277 |
-
}
|
| 278 |
-
}
|
| 279 |
-
```
|
| 280 |
-
|
| 281 |
-
3. Purchase Order:
|
| 282 |
-
- Extract contract and pricing details with precision.
|
| 283 |
-
- JSON structure:
|
| 284 |
-
```json
|
| 285 |
-
{
|
| 286 |
-
"purchaseOrder": {
|
| 287 |
-
"contractNo": null,
|
| 288 |
-
"relPoNo": null,
|
| 289 |
-
"version": null,
|
| 290 |
-
"title": null,
|
| 291 |
-
"startDate": null,
|
| 292 |
-
"endDate": null,
|
| 293 |
-
"costCenter": null,
|
| 294 |
-
"purchasingGroup": null,
|
| 295 |
-
"contractor": null,
|
| 296 |
-
"location": null,
|
| 297 |
-
"workDescription": null,
|
| 298 |
-
"pricing": {
|
| 299 |
-
"regularRate": null,
|
| 300 |
-
"overtimeRate": null,
|
| 301 |
-
"totalBudget": null
|
| 302 |
-
}
|
| 303 |
-
}
|
| 304 |
-
}
|
| 305 |
-
```
|
| 306 |
-
|
| 307 |
-
4. Travel Booking:
|
| 308 |
-
- Parse travel-specific and employee information.
|
| 309 |
-
- JSON structure:
|
| 310 |
-
```json
|
| 311 |
-
{
|
| 312 |
-
"travelBooking": {
|
| 313 |
-
"requestId": null,
|
| 314 |
-
"approvalStatus": null,
|
| 315 |
-
"employee": {
|
| 316 |
-
"name": null,
|
| 317 |
-
"id": null,
|
| 318 |
-
"email": null,
|
| 319 |
-
"firstName": null,
|
| 320 |
-
"lastName": null,
|
| 321 |
-
"gradeCodeGroup": null
|
| 322 |
-
},
|
| 323 |
-
"defaultManager": {
|
| 324 |
-
"name": null,
|
| 325 |
-
"email": null
|
| 326 |
-
},
|
| 327 |
-
"sender": {
|
| 328 |
-
"name": null,
|
| 329 |
-
"email": null
|
| 330 |
-
},
|
| 331 |
-
"travel": {
|
| 332 |
-
"startDate": null,
|
| 333 |
-
"endDate": null,
|
| 334 |
-
"requestPolicy": null,
|
| 335 |
-
"requestType": null,
|
| 336 |
-
"employeeType": null,
|
| 337 |
-
"travelActivity": null,
|
| 338 |
-
"tripType": null
|
| 339 |
-
},
|
| 340 |
-
"cost": {
|
| 341 |
-
"companyCode": null,
|
| 342 |
-
"costObject": null,
|
| 343 |
-
"costObjectId": null
|
| 344 |
-
},
|
| 345 |
-
"transport": {
|
| 346 |
-
"type": null,
|
| 347 |
-
"comments": null
|
| 348 |
-
},
|
| 349 |
-
"changeRequired": null,
|
| 350 |
-
"comments": null
|
| 351 |
-
}
|
| 352 |
-
}
|
| 353 |
-
```
|
| 354 |
-
|
| 355 |
-
Use these structures for parsing documents and ensure compliance with the rules and instructions provided for each type."""
|
| 356 |
),
|
| 357 |
"Aramco Timesheet only": (
|
| 358 |
"""Extract time tracking, work details, and approvals.
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
{
|
| 362 |
-
"timesheet": {
|
| 363 |
-
"Year": null,
|
| 364 |
-
"RPO_Number": null,
|
| 365 |
-
"PMC_Name": null,
|
| 366 |
-
"Project_Location": null,
|
| 367 |
-
"Project_and_Package": null,
|
| 368 |
-
"Month": null,
|
| 369 |
-
"Timesheet_Details": [
|
| 370 |
-
{
|
| 371 |
-
"Week": null,
|
| 372 |
-
"Regular_Hours": null,
|
| 373 |
-
"Overtime_Hours": null,
|
| 374 |
-
"Total_Hours": null,
|
| 375 |
-
"Comments": null
|
| 376 |
-
},
|
| 377 |
-
{
|
| 378 |
-
"Week": null,
|
| 379 |
-
"Regular_Hours": null,
|
| 380 |
-
"Overtime_Hours": null,
|
| 381 |
-
"Total_Hours": null,
|
| 382 |
-
"Comments": null
|
| 383 |
-
}
|
| 384 |
-
],
|
| 385 |
-
"Monthly_Totals": {
|
| 386 |
-
"Regular_Hours": null,
|
| 387 |
-
"Overtime_Hours": null,
|
| 388 |
-
"Total_Hours": null
|
| 389 |
-
},
|
| 390 |
-
"reviewedBy": {
|
| 391 |
-
"name": null,
|
| 392 |
-
"position": null,
|
| 393 |
-
"date": null
|
| 394 |
-
},
|
| 395 |
-
"approvedBy": {
|
| 396 |
-
"name": null,
|
| 397 |
-
"position": null,
|
| 398 |
-
"date": null
|
| 399 |
-
}
|
| 400 |
-
}
|
| 401 |
-
}
|
| 402 |
-
```"""
|
| 403 |
),
|
| 404 |
"NOC Invoice": (
|
| 405 |
-
"""You are a highly accurate data extraction system.
|
| 406 |
-
|
| 407 |
-
Here's the expected output format, in JSON, with all required fields:
|
| 408 |
-
|
| 409 |
-
```json
|
| 410 |
{
|
| 411 |
-
"invoiceDetails": {
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
},
|
| 418 |
-
"from": {
|
| 419 |
-
"companyName": "string",
|
| 420 |
-
"addressLine1": "string",
|
| 421 |
-
"addressLine2": "string",
|
| 422 |
-
"city": "string",
|
| 423 |
-
"postalCode": "string",
|
| 424 |
-
"country": "string"
|
| 425 |
-
},
|
| 426 |
-
"to": {
|
| 427 |
-
"companyName": "string",
|
| 428 |
-
"office": "string",
|
| 429 |
-
"floor": "string",
|
| 430 |
-
"building": "string",
|
| 431 |
-
"addressLine1": "string",
|
| 432 |
-
"poBox": "string",
|
| 433 |
-
"city": "string"
|
| 434 |
-
},
|
| 435 |
-
"services": [
|
| 436 |
-
{
|
| 437 |
-
"serviceDetails": "string",
|
| 438 |
-
"fromDate": "string",
|
| 439 |
-
"toDate": "string",
|
| 440 |
-
"currency": "string",
|
| 441 |
-
"fx": "string",
|
| 442 |
-
"noOfDays": "number or string (if range)",
|
| 443 |
-
"rate": "number",
|
| 444 |
-
"total": "number"
|
| 445 |
-
}
|
| 446 |
-
],
|
| 447 |
-
"totals": {
|
| 448 |
-
"subTotal": "number",
|
| 449 |
-
"tax": "number",
|
| 450 |
-
"totalDue": "number"
|
| 451 |
-
},
|
| 452 |
-
"bankDetails": {
|
| 453 |
-
"bankName": "string",
|
| 454 |
-
"descriptionReferenceField": "string",
|
| 455 |
-
"bankAddress": "string",
|
| 456 |
-
"swiftBicCode": "string",
|
| 457 |
-
"ibanNumber": "string",
|
| 458 |
-
"accountNumber": "string",
|
| 459 |
-
"beneficiaryName": "string",
|
| 460 |
-
"accountCurrency": "string",
|
| 461 |
-
"expectedAmount": "string"
|
| 462 |
-
}
|
| 463 |
}
|
| 464 |
-
|
| 465 |
)
|
| 466 |
}
|
| 467 |
|
| 468 |
-
#
|
| 469 |
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
|
| 470 |
context = ""
|
| 471 |
-
if doc_state.current_doc_images:
|
| 472 |
-
|
| 473 |
-
context = f"\nDocument context:\n{doc_state.current_doc_text}"
|
| 474 |
full_prompt = selected_prompt + context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
|
| 476 |
-
#
|
| 477 |
-
messages = [{"role": "user", "content": full_prompt}]
|
| 478 |
-
|
| 479 |
-
# If an image is available, encode it in base64 and append to the prompt
|
| 480 |
if doc_state.current_doc_images:
|
| 481 |
buffered = io.BytesIO()
|
| 482 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
| 483 |
-
|
| 484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
|
| 486 |
-
# Call the
|
| 487 |
-
|
| 488 |
model="qwen/qwen2.5-vl-72b-instruct:free",
|
| 489 |
messages=messages,
|
| 490 |
max_tokens=max_new_tokens,
|
| 491 |
-
stream=True
|
| 492 |
)
|
| 493 |
|
| 494 |
buffer = ""
|
| 495 |
-
for chunk in
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
except Exception as e:
|
| 504 |
logger.error(f"Error in bot_streaming: {str(e)}")
|
| 505 |
yield "An error occurred while processing your request. Please try again."
|
|
@@ -521,48 +279,21 @@ with gr.Blocks() as demo:
|
|
| 521 |
label="Upload Document",
|
| 522 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
|
| 523 |
)
|
| 524 |
-
upload_status = gr.Textbox(
|
| 525 |
-
label="Upload Status",
|
| 526 |
-
interactive=False
|
| 527 |
-
)
|
| 528 |
|
| 529 |
with gr.Row():
|
| 530 |
prompt_dropdown = gr.Dropdown(
|
| 531 |
label="Select Prompt",
|
| 532 |
-
choices=[
|
| 533 |
-
"NOC Timesheet",
|
| 534 |
-
"NOC Basic",
|
| 535 |
-
"Aramco Full structured",
|
| 536 |
-
"Aramco Timesheet only",
|
| 537 |
-
"NOC Invoice"
|
| 538 |
-
],
|
| 539 |
value="NOC Timesheet"
|
| 540 |
)
|
| 541 |
generate_btn = gr.Button("Generate")
|
| 542 |
|
| 543 |
clear_btn = gr.Button("Clear Document Context")
|
|
|
|
| 544 |
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
)
|
| 549 |
-
|
| 550 |
-
file_upload.change(
|
| 551 |
-
fn=process_uploaded_file,
|
| 552 |
-
inputs=[file_upload],
|
| 553 |
-
outputs=[upload_status]
|
| 554 |
-
)
|
| 555 |
-
|
| 556 |
-
generate_btn.click(
|
| 557 |
-
fn=bot_streaming,
|
| 558 |
-
inputs=[prompt_dropdown],
|
| 559 |
-
outputs=[output_text]
|
| 560 |
-
)
|
| 561 |
-
|
| 562 |
-
clear_btn.click(
|
| 563 |
-
fn=clear_context,
|
| 564 |
-
outputs=[upload_status]
|
| 565 |
-
)
|
| 566 |
|
| 567 |
-
# Launch the interface
|
| 568 |
demo.launch(debug=True)
|
|
|
|
| 1 |
+
import os
|
|
|
|
| 2 |
import io
|
| 3 |
import time
|
| 4 |
+
import base64
|
| 5 |
import logging
|
| 6 |
import fitz # PyMuPDF
|
| 7 |
from PIL import Image
|
| 8 |
import gradio as gr
|
| 9 |
+
from openai import OpenAI # Use the OpenAI client that supports multimodal messages
|
| 10 |
+
|
| 11 |
+
# Load API key from environment variable (secrets)
|
| 12 |
+
HF_API_KEY = os.getenv("OPENAI_TOKEN")
|
| 13 |
+
if not HF_API_KEY:
|
| 14 |
+
raise ValueError("HF_API_KEY environment variable not set")
|
| 15 |
+
|
| 16 |
+
# Create the client pointing to the Hugging Face Inference endpoint
|
| 17 |
+
client = OpenAI(
|
| 18 |
+
base_url="https://openrouter.ai/api/v1",
|
| 19 |
+
api_key=HF_API_KEY
|
| 20 |
+
)
|
| 21 |
|
| 22 |
# Set up logging
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# -------------------------------
|
| 27 |
# Document State and File Processing
|
| 28 |
# -------------------------------
|
|
|
|
| 40 |
doc_state = DocumentState()
|
| 41 |
|
| 42 |
def process_pdf_file(file_path):
|
| 43 |
+
"""Convert PDF pages to images and extract text using PyMuPDF."""
|
| 44 |
try:
|
| 45 |
doc = fitz.open(file_path)
|
| 46 |
images = []
|
|
|
|
| 52 |
if page_text.strip():
|
| 53 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
| 54 |
|
| 55 |
+
# Render page as an image with a zoom factor
|
| 56 |
zoom = 3
|
| 57 |
mat = fitz.Matrix(zoom, zoom)
|
| 58 |
pix = page.get_pixmap(matrix=mat, alpha=False)
|
| 59 |
img_data = pix.tobytes("png")
|
| 60 |
+
img = Image.open(io.BytesIO(img_data)).convert("RGB")
|
|
|
|
| 61 |
|
| 62 |
# Resize if image is too large
|
| 63 |
max_size = 1600
|
|
|
|
| 65 |
ratio = max_size / max(img.size)
|
| 66 |
new_size = tuple(int(dim * ratio) for dim in img.size)
|
| 67 |
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
|
|
|
| 68 |
images.append(img)
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"Error processing page {page_num}: {str(e)}")
|
|
|
|
| 78 |
raise
|
| 79 |
|
| 80 |
def process_uploaded_file(file):
|
| 81 |
+
"""Process an uploaded file (PDF or image) and update document state."""
|
| 82 |
try:
|
| 83 |
doc_state.clear()
|
| 84 |
if file is None:
|
| 85 |
return "No file uploaded. Please upload a file."
|
| 86 |
|
| 87 |
+
# Get the file path from the Gradio upload (may be a dict or file-like object)
|
| 88 |
if isinstance(file, dict):
|
| 89 |
file_path = file["name"]
|
| 90 |
else:
|
|
|
|
| 119 |
return "An error occurred while processing the file. Please try again."
|
| 120 |
|
| 121 |
# -------------------------------
|
| 122 |
+
# Bot Streaming Function Using the Multimodal API
|
| 123 |
# -------------------------------
|
| 124 |
+
def bot_streaming(prompt_option, max_new_tokens=500):
|
| 125 |
"""
|
| 126 |
+
Build a multimodal message payload and call the inference API.
|
| 127 |
+
The payload includes:
|
| 128 |
+
- A text segment (the selected prompt and any document context).
|
| 129 |
+
- If available, an image as a data URI (using a base64-encoded PNG).
|
| 130 |
"""
|
| 131 |
try:
|
| 132 |
+
# Predetermined prompts (you can adjust these as needed)
|
| 133 |
prompts = {
|
| 134 |
"NOC Timesheet": (
|
| 135 |
"""Extract structured information from the provided timesheet. The extracted details should include:
|
|
|
|
| 174 |
|
| 175 |
Noc representative status as approval_status
|
| 176 |
|
| 177 |
+
Format the output as valid JSON.
|
| 178 |
+
"""
|
|
|
|
| 179 |
),
|
| 180 |
"NOC Basic": (
|
| 181 |
"Based on the provided timesheet details, extract the following information:\n"
|
| 182 |
+
" - Full name\n"
|
| 183 |
+
" - Position title\n"
|
| 184 |
" - Work location\n"
|
| 185 |
" - Contractor's name\n"
|
| 186 |
" - NOC ID\n"
|
| 187 |
+
" - Month and year (MM/YYYY)"
|
| 188 |
),
|
| 189 |
"Aramco Full structured": (
|
| 190 |
+
"""You are a document parsing assistant designed to extract structured data from various documents such as invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text.
|
| 191 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
),
|
| 193 |
"Aramco Timesheet only": (
|
| 194 |
"""Extract time tracking, work details, and approvals.
|
| 195 |
+
Return a JSON object following the specified structure.
|
| 196 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
),
|
| 198 |
"NOC Invoice": (
|
| 199 |
+
"""You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data into the following JSON format:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
{
|
| 201 |
+
"invoiceDetails": { ... },
|
| 202 |
+
"from": { ... },
|
| 203 |
+
"to": { ... },
|
| 204 |
+
"services": [ ... ],
|
| 205 |
+
"totals": { ... },
|
| 206 |
+
"bankDetails": { ... }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
}
|
| 208 |
+
"""
|
| 209 |
)
|
| 210 |
}
|
| 211 |
|
| 212 |
+
# Select the appropriate prompt
|
| 213 |
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
|
| 214 |
context = ""
|
| 215 |
+
if doc_state.current_doc_images and doc_state.current_doc_text:
|
| 216 |
+
context = "\nDocument context:\n" + doc_state.current_doc_text
|
|
|
|
| 217 |
full_prompt = selected_prompt + context
|
| 218 |
+
|
| 219 |
+
# Build the message payload in the expected format.
|
| 220 |
+
# The content field is a list of objects—one for text, and (if an image is available) one for the image.
|
| 221 |
+
messages = [
|
| 222 |
+
{
|
| 223 |
+
"role": "user",
|
| 224 |
+
"content": [
|
| 225 |
+
{
|
| 226 |
+
"type": "text",
|
| 227 |
+
"text": full_prompt
|
| 228 |
+
}
|
| 229 |
+
]
|
| 230 |
+
}
|
| 231 |
+
]
|
| 232 |
|
| 233 |
+
# If an image is available, encode it as a data URI and append it as an image_url message.
|
|
|
|
|
|
|
|
|
|
| 234 |
if doc_state.current_doc_images:
|
| 235 |
buffered = io.BytesIO()
|
| 236 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
| 237 |
+
img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 238 |
+
# Create a data URI (many APIs accept this format in place of a public URL)
|
| 239 |
+
data_uri = f"data:image/png;base64,{img_b64}"
|
| 240 |
+
messages[0]["content"].append({
|
| 241 |
+
"type": "image_url",
|
| 242 |
+
"image_url": {"url": data_uri}
|
| 243 |
+
})
|
| 244 |
|
| 245 |
+
# Call the inference API with streaming enabled.
|
| 246 |
+
stream = client.chat.completions.create(
|
| 247 |
model="qwen/qwen2.5-vl-72b-instruct:free",
|
| 248 |
messages=messages,
|
| 249 |
max_tokens=max_new_tokens,
|
| 250 |
+
stream=True
|
| 251 |
)
|
| 252 |
|
| 253 |
buffer = ""
|
| 254 |
+
for chunk in stream:
|
| 255 |
+
# The response structure is similar to the reference: each chunk contains a delta.
|
| 256 |
+
delta = chunk.choices[0].delta.content
|
| 257 |
+
buffer += delta
|
| 258 |
+
time.sleep(0.01)
|
| 259 |
+
yield buffer
|
| 260 |
+
|
|
|
|
| 261 |
except Exception as e:
|
| 262 |
logger.error(f"Error in bot_streaming: {str(e)}")
|
| 263 |
yield "An error occurred while processing your request. Please try again."
|
|
|
|
| 279 |
label="Upload Document",
|
| 280 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
|
| 281 |
)
|
| 282 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
with gr.Row():
|
| 285 |
prompt_dropdown = gr.Dropdown(
|
| 286 |
label="Select Prompt",
|
| 287 |
+
choices=["NOC Timesheet", "NOC Basic", "Aramco Full structured", "Aramco Timesheet only", "NOC Invoice"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
value="NOC Timesheet"
|
| 289 |
)
|
| 290 |
generate_btn = gr.Button("Generate")
|
| 291 |
|
| 292 |
clear_btn = gr.Button("Clear Document Context")
|
| 293 |
+
output_text = gr.Textbox(label="Output", interactive=False)
|
| 294 |
|
| 295 |
+
file_upload.change(fn=process_uploaded_file, inputs=[file_upload], outputs=[upload_status])
|
| 296 |
+
generate_btn.click(fn=bot_streaming, inputs=[prompt_dropdown], outputs=[output_text])
|
| 297 |
+
clear_btn.click(fn=clear_context, outputs=[upload_status])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
|
|
|
| 299 |
demo.launch(debug=True)
|