Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,55 +7,75 @@ import gradio as gr
|
|
7 |
from gradio import FileData
|
8 |
import time
|
9 |
import spaces
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
12 |
torch_dtype=torch.bfloat16).to("cuda")
|
13 |
processor = AutoProcessor.from_pretrained(ckpt)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@spaces.GPU()
|
17 |
def bot_streaming(message, history, max_new_tokens=2048):
|
18 |
-
|
19 |
txt = message["text"]
|
20 |
ext_buffer = f"{txt}"
|
21 |
|
22 |
-
messages= []
|
23 |
images = []
|
24 |
|
25 |
-
|
26 |
-
for i, msg in enumerate(history):
|
27 |
if isinstance(msg[0], tuple):
|
28 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "
|
29 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
30 |
images.append(Image.open(msg[0][0]).convert("RGB"))
|
31 |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
32 |
-
# messages are already handled
|
33 |
pass
|
34 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
35 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
36 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
37 |
|
38 |
-
#
|
39 |
if len(message["files"]) == 1:
|
|
|
40 |
|
41 |
-
if
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
47 |
else:
|
48 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
49 |
|
50 |
-
|
51 |
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
52 |
|
53 |
-
if images
|
54 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
55 |
else:
|
56 |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
|
|
57 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
58 |
-
|
59 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
60 |
generated_text = ""
|
61 |
|
@@ -69,32 +89,34 @@ def bot_streaming(message, history, max_new_tokens=2048):
|
|
69 |
time.sleep(0.01)
|
70 |
yield buffer
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
250],
|
82 |
-
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
|
83 |
-
250],
|
84 |
],
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
demo.launch(debug=True)
|
|
|
7 |
from gradio import FileData
|
8 |
import time
|
9 |
import spaces
|
10 |
+
from pdf2image import convert_from_path
|
11 |
+
import os
|
12 |
+
from PyPDF2 import PdfReader
|
13 |
+
import tempfile
|
14 |
+
|
15 |
+
ckpt = "Daemontatox/DocumentCogito"
|
16 |
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
17 |
torch_dtype=torch.bfloat16).to("cuda")
|
18 |
processor = AutoProcessor.from_pretrained(ckpt)
|
19 |
|
20 |
+
def process_pdf(pdf_path):
|
21 |
+
"""Convert PDF pages to images and extract text."""
|
22 |
+
images = convert_from_path(pdf_path)
|
23 |
+
pdf_reader = PdfReader(pdf_path)
|
24 |
+
text = ""
|
25 |
+
for page in pdf_reader.pages:
|
26 |
+
text += page.extract_text() + "\n"
|
27 |
+
return images, text
|
28 |
+
|
29 |
+
def is_pdf(file_path):
|
30 |
+
"""Check if the file is a PDF."""
|
31 |
+
return file_path.lower().endswith('.pdf')
|
32 |
|
33 |
@spaces.GPU()
|
34 |
def bot_streaming(message, history, max_new_tokens=2048):
|
|
|
35 |
txt = message["text"]
|
36 |
ext_buffer = f"{txt}"
|
37 |
|
38 |
+
messages = []
|
39 |
images = []
|
40 |
|
41 |
+
# Process history
|
42 |
+
for i, msg in enumerate(history):
|
43 |
if isinstance(msg[0], tuple):
|
44 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "text", "text": history[i+1][1]}]})
|
45 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
46 |
images.append(Image.open(msg[0][0]).convert("RGB"))
|
47 |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
|
|
48 |
pass
|
49 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
50 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
51 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
52 |
|
53 |
+
# Process current message
|
54 |
if len(message["files"]) == 1:
|
55 |
+
file_path = message["files"][0]["path"] if isinstance(message["files"][0], dict) else message["files"][0]
|
56 |
|
57 |
+
if is_pdf(file_path):
|
58 |
+
# Handle PDF
|
59 |
+
pdf_images, pdf_text = process_pdf(file_path)
|
60 |
+
images.extend(pdf_images)
|
61 |
+
txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
|
62 |
+
else:
|
63 |
+
# Handle regular image
|
64 |
+
image = Image.open(file_path).convert("RGB")
|
65 |
+
images.append(image)
|
66 |
+
|
67 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
68 |
else:
|
69 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
70 |
|
|
|
71 |
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
72 |
|
73 |
+
if not images:
|
74 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
75 |
else:
|
76 |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
77 |
+
|
78 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
|
|
79 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
80 |
generated_text = ""
|
81 |
|
|
|
89 |
time.sleep(0.01)
|
90 |
yield buffer
|
91 |
|
92 |
+
demo = gr.ChatInterface(
|
93 |
+
fn=bot_streaming,
|
94 |
+
title="Document Analyzer",
|
95 |
+
examples=[
|
96 |
+
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
|
97 |
+
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
|
98 |
+
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
|
99 |
+
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
|
100 |
+
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
|
|
|
|
|
|
|
101 |
],
|
102 |
+
textbox=gr.MultimodalTextbox(),
|
103 |
+
additional_inputs=[
|
104 |
+
gr.Slider(
|
105 |
+
minimum=10,
|
106 |
+
maximum=500,
|
107 |
+
value=2048,
|
108 |
+
step=10,
|
109 |
+
label="Maximum number of new tokens to generate",
|
110 |
+
)
|
111 |
+
],
|
112 |
+
cache_examples=False,
|
113 |
+
description="MllM Document and PDF Analyzer",
|
114 |
+
stop_btn="Stop Generation",
|
115 |
+
fill_height=True,
|
116 |
+
multimodal=True
|
117 |
+
)
|
118 |
+
|
119 |
+
# Update file types to include PDFs
|
120 |
+
demo.textbox.file_types = ["image", "pdf"]
|
121 |
+
|
122 |
demo.launch(debug=True)
|