Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,9 +11,9 @@ from openai import OpenAI # Use the OpenAI client that supports multimodal mess
|
|
| 11 |
# Load API key from environment variable (secrets)
|
| 12 |
HF_API_KEY = os.getenv("OPENAI_TOKEN")
|
| 13 |
if not HF_API_KEY:
|
| 14 |
-
raise ValueError("
|
| 15 |
|
| 16 |
-
# Create the client pointing to the
|
| 17 |
client = OpenAI(
|
| 18 |
base_url="https://openrouter.ai/api/v1",
|
| 19 |
api_key=HF_API_KEY
|
|
@@ -50,15 +50,13 @@ def process_pdf_file(file_path):
|
|
| 50 |
page = doc[page_num]
|
| 51 |
page_text = page.get_text("text")
|
| 52 |
if page_text.strip():
|
| 53 |
-
text += f"Page {page_num
|
| 54 |
-
|
| 55 |
# Render page as an image with a zoom factor
|
| 56 |
zoom = 3
|
| 57 |
mat = fitz.Matrix(zoom, zoom)
|
| 58 |
pix = page.get_pixmap(matrix=mat, alpha=False)
|
| 59 |
img_data = pix.tobytes("png")
|
| 60 |
img = Image.open(io.BytesIO(img_data)).convert("RGB")
|
| 61 |
-
|
| 62 |
# Resize if image is too large
|
| 63 |
max_size = 1600
|
| 64 |
if max(img.size) > max_size:
|
|
@@ -140,31 +138,24 @@ predetermined_prompts = {
|
|
| 140 |
# -------------------------------
|
| 141 |
def chat_respond(user_message, history, prompt_option):
|
| 142 |
"""
|
| 143 |
-
Append the user message
|
| 144 |
-
|
| 145 |
-
the full conversation history (and the image if available); stream back the assistant response
|
| 146 |
-
while updating the history.
|
| 147 |
-
|
| 148 |
The history is a list of [user_text, assistant_text] pairs.
|
| 149 |
"""
|
| 150 |
-
# If this is the first message,
|
| 151 |
if history == []:
|
| 152 |
-
# If user_message is empty, use the predetermined prompt.
|
| 153 |
if not user_message.strip():
|
| 154 |
user_message = predetermined_prompts.get(prompt_option, "Hello")
|
| 155 |
else:
|
| 156 |
-
# Optionally, prepend the predetermined prompt.
|
| 157 |
user_message = predetermined_prompts.get(prompt_option, "") + "\n" + user_message
|
| 158 |
|
| 159 |
-
# Append the new user message with an empty assistant response.
|
| 160 |
history = history + [[user_message, ""]]
|
| 161 |
|
| 162 |
-
# Build the messages list
|
| 163 |
messages = []
|
| 164 |
for i, (user_msg, assistant_msg) in enumerate(history):
|
| 165 |
-
# For the user message:
|
| 166 |
user_content = [{"type": "text", "text": user_msg}]
|
| 167 |
-
# For the very first user message,
|
| 168 |
if i == 0 and doc_state.current_doc_images:
|
| 169 |
buffered = io.BytesIO()
|
| 170 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
|
@@ -175,34 +166,31 @@ def chat_respond(user_message, history, prompt_option):
|
|
| 175 |
"image_url": {"url": data_uri}
|
| 176 |
})
|
| 177 |
messages.append({"role": "user", "content": user_content})
|
| 178 |
-
# For the assistant response, if available.
|
| 179 |
if assistant_msg:
|
| 180 |
messages.append({
|
| 181 |
"role": "assistant",
|
| 182 |
"content": [{"type": "text", "text": assistant_msg}]
|
| 183 |
})
|
| 184 |
|
| 185 |
-
#
|
| 186 |
try:
|
| 187 |
stream = client.chat.completions.create(
|
| 188 |
-
model="google/gemini-2.0-
|
| 189 |
messages=messages,
|
| 190 |
max_tokens=8192,
|
| 191 |
stream=True
|
| 192 |
)
|
| 193 |
except Exception as e:
|
| 194 |
logger.error(f"Error calling the API: {str(e)}")
|
| 195 |
-
history[-1][1] = "An error occurred while processing your request. Please
|
| 196 |
yield history, history
|
|
|
|
| 197 |
|
| 198 |
-
# Stream and update the assistant's reply token by token.
|
| 199 |
buffer = ""
|
| 200 |
for chunk in stream:
|
| 201 |
delta = chunk.choices[0].delta.content
|
| 202 |
buffer += delta
|
| 203 |
-
# Update the assistant part of the latest message in the history.
|
| 204 |
history[-1][1] = buffer
|
| 205 |
-
# Yield the updated chat history (for the Chatbot component) and the state.
|
| 206 |
yield history, history
|
| 207 |
time.sleep(0.01)
|
| 208 |
|
|
@@ -212,11 +200,11 @@ def chat_respond(user_message, history, prompt_option):
|
|
| 212 |
# Create the Gradio Interface
|
| 213 |
# -------------------------------
|
| 214 |
with gr.Blocks() as demo:
|
| 215 |
-
gr.Markdown("#
|
| 216 |
gr.Markdown(
|
| 217 |
"Upload a PDF or an image (PNG, JPG, JPEG, GIF, BMP, WEBP). Then choose a prompt from the dropdown. "
|
| 218 |
"For example, select **Software Tester** to have the bot analyze an image of a software interface "
|
| 219 |
-
"and generate test cases.
|
| 220 |
)
|
| 221 |
|
| 222 |
with gr.Row():
|
|
@@ -230,6 +218,7 @@ with gr.Blocks() as demo:
|
|
| 230 |
prompt_dropdown = gr.Dropdown(
|
| 231 |
label="Select Prompt",
|
| 232 |
choices=[
|
|
|
|
| 233 |
"Software Tester"
|
| 234 |
],
|
| 235 |
value="Software Tester"
|
|
@@ -244,16 +233,19 @@ with gr.Blocks() as demo:
|
|
| 244 |
|
| 245 |
# State to hold the conversation history
|
| 246 |
chat_state = gr.State([])
|
| 247 |
-
|
| 248 |
# When a file is uploaded, process it.
|
| 249 |
file_upload.change(fn=process_uploaded_file, inputs=file_upload, outputs=upload_status)
|
| 250 |
|
| 251 |
-
# Clear both the document context and chat history.
|
| 252 |
clear_btn.click(fn=clear_context, outputs=[upload_status, chat_state])
|
| 253 |
|
| 254 |
# When the user clicks Send, process the message and update the chat.
|
| 255 |
-
send_btn.click(
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
demo.launch(debug=True)
|
|
|
|
| 11 |
# Load API key from environment variable (secrets)
|
| 12 |
HF_API_KEY = os.getenv("OPENAI_TOKEN")
|
| 13 |
if not HF_API_KEY:
|
| 14 |
+
raise ValueError("OPENAI_TOKEN environment variable not set")
|
| 15 |
|
| 16 |
+
# Create the client pointing to the inference endpoint (e.g., OpenRouter)
|
| 17 |
client = OpenAI(
|
| 18 |
base_url="https://openrouter.ai/api/v1",
|
| 19 |
api_key=HF_API_KEY
|
|
|
|
| 50 |
page = doc[page_num]
|
| 51 |
page_text = page.get_text("text")
|
| 52 |
if page_text.strip():
|
| 53 |
+
text += f"Page {page_num+1}:\n{page_text}\n\n"
|
|
|
|
| 54 |
# Render page as an image with a zoom factor
|
| 55 |
zoom = 3
|
| 56 |
mat = fitz.Matrix(zoom, zoom)
|
| 57 |
pix = page.get_pixmap(matrix=mat, alpha=False)
|
| 58 |
img_data = pix.tobytes("png")
|
| 59 |
img = Image.open(io.BytesIO(img_data)).convert("RGB")
|
|
|
|
| 60 |
# Resize if image is too large
|
| 61 |
max_size = 1600
|
| 62 |
if max(img.size) > max_size:
|
|
|
|
| 138 |
# -------------------------------
|
| 139 |
def chat_respond(user_message, history, prompt_option):
|
| 140 |
"""
|
| 141 |
+
Append the user message to the conversation history and call the API.
|
| 142 |
+
In case of an API error (such as unauthorized access), return an error message.
|
|
|
|
|
|
|
|
|
|
| 143 |
The history is a list of [user_text, assistant_text] pairs.
|
| 144 |
"""
|
| 145 |
+
# If this is the first message and no message is provided, use the predetermined prompt.
|
| 146 |
if history == []:
|
|
|
|
| 147 |
if not user_message.strip():
|
| 148 |
user_message = predetermined_prompts.get(prompt_option, "Hello")
|
| 149 |
else:
|
|
|
|
| 150 |
user_message = predetermined_prompts.get(prompt_option, "") + "\n" + user_message
|
| 151 |
|
|
|
|
| 152 |
history = history + [[user_message, ""]]
|
| 153 |
|
| 154 |
+
# Build the messages list for the multimodal API from the conversation history.
|
| 155 |
messages = []
|
| 156 |
for i, (user_msg, assistant_msg) in enumerate(history):
|
|
|
|
| 157 |
user_content = [{"type": "text", "text": user_msg}]
|
| 158 |
+
# For the very first user message, attach the image if available.
|
| 159 |
if i == 0 and doc_state.current_doc_images:
|
| 160 |
buffered = io.BytesIO()
|
| 161 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
|
|
|
| 166 |
"image_url": {"url": data_uri}
|
| 167 |
})
|
| 168 |
messages.append({"role": "user", "content": user_content})
|
|
|
|
| 169 |
if assistant_msg:
|
| 170 |
messages.append({
|
| 171 |
"role": "assistant",
|
| 172 |
"content": [{"type": "text", "text": assistant_msg}]
|
| 173 |
})
|
| 174 |
|
| 175 |
+
# Try to call the API with streaming enabled.
|
| 176 |
try:
|
| 177 |
stream = client.chat.completions.create(
|
| 178 |
+
model="google/gemini-2.0-flash-lite-preview-02-05:free",
|
| 179 |
messages=messages,
|
| 180 |
max_tokens=8192,
|
| 181 |
stream=True
|
| 182 |
)
|
| 183 |
except Exception as e:
|
| 184 |
logger.error(f"Error calling the API: {str(e)}")
|
| 185 |
+
history[-1][1] = "An error occurred while processing your request. Please check your API credentials."
|
| 186 |
yield history, history
|
| 187 |
+
return
|
| 188 |
|
|
|
|
| 189 |
buffer = ""
|
| 190 |
for chunk in stream:
|
| 191 |
delta = chunk.choices[0].delta.content
|
| 192 |
buffer += delta
|
|
|
|
| 193 |
history[-1][1] = buffer
|
|
|
|
| 194 |
yield history, history
|
| 195 |
time.sleep(0.01)
|
| 196 |
|
|
|
|
| 200 |
# Create the Gradio Interface
|
| 201 |
# -------------------------------
|
| 202 |
with gr.Blocks() as demo:
|
| 203 |
+
gr.Markdown("# Document Analyzer & Software Testing Chatbot")
|
| 204 |
gr.Markdown(
|
| 205 |
"Upload a PDF or an image (PNG, JPG, JPEG, GIF, BMP, WEBP). Then choose a prompt from the dropdown. "
|
| 206 |
"For example, select **Software Tester** to have the bot analyze an image of a software interface "
|
| 207 |
+
"and generate test cases. You can also chat with the model—the conversation history is preserved."
|
| 208 |
)
|
| 209 |
|
| 210 |
with gr.Row():
|
|
|
|
| 218 |
prompt_dropdown = gr.Dropdown(
|
| 219 |
label="Select Prompt",
|
| 220 |
choices=[
|
| 221 |
+
|
| 222 |
"Software Tester"
|
| 223 |
],
|
| 224 |
value="Software Tester"
|
|
|
|
| 233 |
|
| 234 |
# State to hold the conversation history
|
| 235 |
chat_state = gr.State([])
|
| 236 |
+
|
| 237 |
# When a file is uploaded, process it.
|
| 238 |
file_upload.change(fn=process_uploaded_file, inputs=file_upload, outputs=upload_status)
|
| 239 |
|
| 240 |
+
# Clear both the document context and the chat history.
|
| 241 |
clear_btn.click(fn=clear_context, outputs=[upload_status, chat_state])
|
| 242 |
|
| 243 |
# When the user clicks Send, process the message and update the chat.
|
| 244 |
+
send_btn.click(
|
| 245 |
+
fn=chat_respond,
|
| 246 |
+
inputs=[user_input, chat_state, prompt_dropdown],
|
| 247 |
+
outputs=[chatbot, chat_state],
|
| 248 |
+
stream=True
|
| 249 |
+
)
|
| 250 |
|
| 251 |
demo.launch(debug=True)
|