import os import io import time import base64 import logging import fitz # PyMuPDF from PIL import Image import gradio as gr from openai import OpenAI # Use the OpenAI client that supports multimodal messages # Load API key from environment variable (secrets) HF_API_KEY = os.getenv("OPENAI_TOKEN") if not HF_API_KEY: raise ValueError("HF_API_KEY environment variable not set") # Create the client pointing to the Hugging Face Inference endpoint client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=HF_API_KEY ) # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ------------------------------- # Document State and File Processing # ------------------------------- class DocumentState: def __init__(self): self.current_doc_images = [] self.current_doc_text = "" self.doc_type = None def clear(self): self.current_doc_images = [] self.current_doc_text = "" self.doc_type = None doc_state = DocumentState() def process_pdf_file(file_path): """Convert PDF pages to images and extract text using PyMuPDF.""" try: doc = fitz.open(file_path) images = [] text = "" for page_num in range(doc.page_count): try: page = doc[page_num] page_text = page.get_text("text") if page_text.strip(): text += f"Page {page_num + 1}:\n{page_text}\n\n" # Render page as an image with a zoom factor zoom = 3 mat = fitz.Matrix(zoom, zoom) pix = page.get_pixmap(matrix=mat, alpha=False) img_data = pix.tobytes("png") img = Image.open(io.BytesIO(img_data)).convert("RGB") # Resize if image is too large max_size = 1600 if max(img.size) > max_size: ratio = max_size / max(img.size) new_size = tuple(int(dim * ratio) for dim in img.size) img = img.resize(new_size, Image.Resampling.LANCZOS) images.append(img) except Exception as e: logger.error(f"Error processing page {page_num}: {str(e)}") continue doc.close() if not images: raise ValueError("No valid images could be extracted from the PDF") return images, text except Exception as e: logger.error(f"Error processing PDF file: {str(e)}") raise def process_uploaded_file(file): """Process an uploaded file (PDF or image) and update document state.""" try: doc_state.clear() if file is None: return "No file uploaded. Please upload a file." # Get the file path from the Gradio upload (may be a dict or file-like object) if isinstance(file, dict): file_path = file["name"] else: file_path = file.name file_ext = file_path.lower().split('.')[-1] image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'} if file_ext == 'pdf': doc_state.doc_type = 'pdf' try: doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path) return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content." except Exception as e: return f"Error processing PDF: {str(e)}. Please try a different PDF file." elif file_ext in image_extensions: doc_state.doc_type = 'image' try: img = Image.open(file_path).convert("RGB") max_size = 1600 if max(img.size) > max_size: ratio = max_size / max(img.size) new_size = tuple(int(dim * ratio) for dim in img.size) img = img.resize(new_size, Image.Resampling.LANCZOS) doc_state.current_doc_images = [img] return "Image loaded successfully. You can now ask questions about the content." except Exception as e: return f"Error processing image: {str(e)}. Please try a different image file." else: return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)." except Exception as e: logger.error(f"Error in process_uploaded_file: {str(e)}") return "An error occurred while processing the file. Please try again." # ------------------------------- # Bot Streaming Function Using the Multimodal API # ------------------------------- def bot_streaming(prompt_option, max_new_tokens=500): """ Build a multimodal message payload and call the inference API. The payload includes: - A text segment (the selected prompt and any document context). - If available, an image as a data URI (using a base64-encoded PNG). """ try: # Predetermined prompts (you can adjust these as needed) prompts = { "NOC Timesheet": ( """Extract structured information from the provided timesheet. The extracted details should include: Name Position Title Work Location Contractor NOC ID Month and Year Regular Service Days (ONSHORE) Standby Days (ONSHORE in Doha) Offshore Days Standby & Extended Hitch Days (OFFSHORE) Extended Hitch Days (ONSHORE Rotational) Service during Weekends & Public Holidays ONSHORE Overtime Hours (Over 8 hours) OFFSHORE Overtime Hours (Over 12 hours) Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel) Training Days Travel Days Noc representative appoval's name as approved_by Noc representative's date approval_date Noc representative status as approval_status Format the output as valid JSON. """ ), "NOC Basic": ( "Based on the provided timesheet details, extract the following information:\n" " - Full name\n" " - Position title\n" " - Work location\n" " - Contractor's name\n" " - NOC ID\n" " - Month and year (MM/YYYY)" ), "Aramco Full structured": ( """You are a document parsing assistant designed to extract structured data from various documents such as invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text. """ ), "Aramco Timesheet only": ( """Extract time tracking, work details, and approvals. Return a JSON object following the specified structure. """ ), "NOC Invoice": ( """You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data into the following JSON format: { "invoiceDetails": { ... }, "from": { ... }, "to": { ... }, "services": [ ... ], "totals": { ... }, "bankDetails": { ... } } """ ) } # Select the appropriate prompt selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.") context = "" if doc_state.current_doc_images and doc_state.current_doc_text: context = "\nDocument context:\n" + doc_state.current_doc_text full_prompt = selected_prompt + context # Build the message payload in the expected format. # The content field is a list of objects—one for text, and (if an image is available) one for the image. messages = [ { "role": "user", "content": [ { "type": "text", "text": full_prompt } ] } ] # If an image is available, encode it as a data URI and append it as an image_url message. if doc_state.current_doc_images: buffered = io.BytesIO() doc_state.current_doc_images[0].save(buffered, format="PNG") img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8") # Create a data URI (many APIs accept this format in place of a public URL) data_uri = f"data:image/png;base64,{img_b64}" messages[0]["content"].append({ "type": "image_url", "image_url": {"url": data_uri} }) # Call the inference API with streaming enabled. stream = client.chat.completions.create( model="qwen/qwen-vl-plus:free", messages=messages, max_tokens=max_new_tokens, stream=True ) buffer = "" for chunk in stream: # The response structure is similar to the reference: each chunk contains a delta. delta = chunk.choices[0].delta.content buffer += delta time.sleep(0.01) yield buffer except Exception as e: logger.error(f"Error in bot_streaming: {str(e)}") yield "An error occurred while processing your request. Please try again." def clear_context(): """Clear the current document context.""" doc_state.clear() return "Document context cleared. You can upload a new document." # ------------------------------- # Create the Gradio Interface # ------------------------------- with gr.Blocks() as demo: gr.Markdown("# Document Analyzer with Predetermined Prompts") gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.") with gr.Row(): file_upload = gr.File( label="Upload Document", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"] ) upload_status = gr.Textbox(label="Upload Status", interactive=False) with gr.Row(): prompt_dropdown = gr.Dropdown( label="Select Prompt", choices=["NOC Timesheet", "NOC Basic", "Aramco Full structured", "Aramco Timesheet only", "NOC Invoice"], value="NOC Timesheet" ) generate_btn = gr.Button("Generate") clear_btn = gr.Button("Clear Document Context") output_text = gr.Textbox(label="Output", interactive=False) file_upload.change(fn=process_uploaded_file, inputs=[file_upload], outputs=[upload_status]) generate_btn.click(fn=bot_streaming, inputs=[prompt_dropdown], outputs=[output_text]) clear_btn.click(fn=clear_context, outputs=[upload_status]) demo.launch(debug=True)