from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer from PIL import Image import requests import torch from threading import Thread import gradio as gr from gradio import FileData import time import spaces from pdf2image import convert_from_path import os from PyPDF2 import PdfReader import tempfile ckpt = "Daemontatox/DocumentCogito" model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda") processor = AutoProcessor.from_pretrained(ckpt) def process_pdf(pdf_path): """Convert PDF pages to images and extract text.""" images = convert_from_path(pdf_path) pdf_reader = PdfReader(pdf_path) text = "" for page in pdf_reader.pages: text += page.extract_text() + "\n" return images, text def is_pdf(file_path): """Check if the file is a PDF.""" return file_path.lower().endswith('.pdf') @spaces.GPU() def bot_streaming(message, history, max_new_tokens=2048): txt = message["text"] ext_buffer = f"{txt}" messages = [] images = [] # Process history for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "text", "text": history[i+1][1]}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]}) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i-1], tuple) and isinstance(msg[0], str): pass elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]}) messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]}) # Process current message if len(message["files"]) == 1: file_path = message["files"][0]["path"] if isinstance(message["files"][0], dict) else message["files"][0] if is_pdf(file_path): # Handle PDF pdf_images, pdf_text = process_pdf(file_path) images.extend(pdf_images) txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}" else: # Handle regular image image = Image.open(file_path).convert("RGB") images.append(image) messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]}) else: messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) texts = processor.apply_chat_template(messages, add_generation_prompt=True) if not images: inputs = processor(text=texts, return_tensors="pt").to("cuda") else: inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer time.sleep(0.01) yield buffer demo = gr.ChatInterface( fn=bot_streaming, title="Document Analyzer", examples=[ [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200], [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250], [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250], [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250], [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250], ], textbox=gr.MultimodalTextbox(), additional_inputs=[ gr.Slider( minimum=10, maximum=500, value=2048, step=10, label="Maximum number of new tokens to generate", ) ], cache_examples=False, description="MllM Document and PDF Analyzer", stop_btn="Stop Generation", fill_height=True, multimodal=True ) # Update file types to include PDFs demo.textbox.file_types = ["image", "pdf"] demo.launch(debug=True)