Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
4 |
+
|
5 |
+
model_id = "wbbbbb/wav2vec2-large-chinese-zh-cn"
|
6 |
+
|
7 |
+
model = snapshot_download(repo_id=model_id, cache_dir='cache')
|
8 |
+
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
9 |
+
|
10 |
+
def transcribe(audio):
|
11 |
+
# 语音识别接口
|
12 |
+
inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True)
|
13 |
+
with torch.no_grad():
|
14 |
+
logits = model(inputs.input_values).logits
|
15 |
+
prediction = processor.batch_decode(torch.argmax(logits, dim=-1))
|
16 |
+
return prediction[0]
|
17 |
+
|
18 |
+
iface = gr.Interface(fn=transcribe, inputs="audio", outputs="text")
|
19 |
+
iface.launch()
|