File size: 17,355 Bytes
c29cd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b807cd3
 
16561ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29cd9c
16561ba
 
 
 
 
 
 
 
0af226f
16561ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c29cd9c
b807cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f9319
b807cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f9319
b807cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458


# # # # # from langchain_google_genai import ChatGoogleGenerativeAI



# # # # # llm = ChatGoogleGenerativeAI(
# # # # #     model="gemini-1.5-flash",
# # # # #     google_api_key='AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE',
# # # # #     temperature=0.2)

# # # # # poem = llm.invoke("Write a poem on love for burger")
# # # # # print(poem)


# # # # import streamlit as st
# # # # from langchain_google_genai import ChatGoogleGenerativeAI

# # # # # Set up the AI model
# # # # llm = ChatGoogleGenerativeAI(
# # # #     model="gemini-1.5-flash",  # Free model
# # # #     google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # # #     temperature=0.5
# # # # )

# # # # # Streamlit UI
# # # # st.title("🩺 Healthcare AI Assistant")
# # # # st.write("Ask me anything about health, symptoms, diet, or general medical advice!")

# # # # # User Input
# # # # user_question = st.text_input("Enter your health-related question:")

# # # # # Process User Query
# # # # if st.button("Get Recommendation"):
# # # #     if user_question.strip():
# # # #         with st.spinner("Analyzing..."):
# # # #             response = llm.invoke(user_question)
# # # #         st.success("Recommendation:")
# # # #         st.write(response)
# # # #     else:
# # # #         st.warning("Please enter a question!")

# # # # # Footer
# # # # st.markdown("---")
# # # # st.markdown("πŸ’‘ *Disclaimer: This AI assistant provides general health information. Always consult a doctor for medical concerns.*")



# # # import streamlit as st
# # # from langchain_google_genai import ChatGoogleGenerativeAI

# # # # Set up AI model
# # # llm = ChatGoogleGenerativeAI(
# # #     model="gemini-1.5-flash",  # Free model
# # #     google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # #     temperature=0.5
# # # )

# # # # Streamlit UI
# # # st.title("🩺 AI Healthcare Learning Assistant")
# # # st.write("Ask me anything about healthcare, symptoms, diet, or medical learning!")

# # # # User Input
# # # user_question = st.text_input("Enter your healthcare question:")

# # # # Function to filter AI disclaimers
# # # def is_valid_response(response):
# # #     disclaimers = [
# # #         "I am an AI and cannot give medical advice",
# # #         "Seek medical attention",
# # #         "Consult a doctor",
# # #         "Contact your doctor",
# # #         "Go to an emergency room",
# # #     ]
# # #     return not any(phrase.lower() in response.lower() for phrase in disclaimers)

# # # # Process User Query
# # # if st.button("Get Information"):
# # #     if user_question.strip():
# # #         with st.spinner("Analyzing..."):
# # #             response = llm.invoke(user_question)
        
# # #         # Check if response is valid
# # #         if is_valid_response(response):
# # #             st.success("Here is the relevant information:")
# # #             st.write(response)
# # #         else:
# # #             st.warning("AI provided a disclaimer. Trying again...")
# # #             # Modify prompt to avoid disclaimers
# # #             better_prompt = f"Give a well-explained answer for educational purposes only: {user_question}"
# # #             retry_response = llm.invoke(better_prompt)

# # #             # Display the retried response if it's valid
# # #             if is_valid_response(retry_response):
# # #                 st.success("Here is the refined information:")
# # #                 st.write(retry_response)
# # #             else:
# # #                 st.error("Unable to get a useful response. Try rephrasing your question.")

# # #     else:
# # #         st.warning("Please enter a question!")

# # # # Footer
# # # st.markdown("---")
# # # st.markdown("πŸ’‘ *This AI provides learning-based medical insights, not actual medical advice.*")



# # import streamlit as st
# # from langchain_google_genai import ChatGoogleGenerativeAI

# # # Set up AI model
# # llm = ChatGoogleGenerativeAI(
# #     model="gemini-1.5-flash",  # Free model
# #     google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# #     temperature=0.5
# # )

# # # Streamlit UI
# # st.title("🩺 AI Healthcare Learning Assistant")
# # st.write("Ask me anything about healthcare, symptoms, diet, or medical learning!")

# # # User Input
# # user_question = st.text_input("Enter your healthcare question:")

# # # Function to filter AI disclaimers
# # def is_valid_response(response_text):
# #     disclaimers = [
# #         "I am an AI and cannot give medical advice",
# #         "Seek medical attention",
# #         "Consult a doctor",
# #         "Contact your doctor",
# #         "Go to an emergency room",
# #     ]
# #     return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)

# # # Process User Query
# # if st.button("Get Information"):
# #     if user_question.strip():
# #         with st.spinner("Analyzing..."):
# #             response = llm.invoke(user_question)

# #         # Extract the text content from AIMessage
# #         response_text = response.content if hasattr(response, "content") else str(response)

# #         # Check if response is valid
# #         if is_valid_response(response_text):
# #             st.success("Here is the relevant information:")
# #             st.write(response_text)
# #         else:
# #             st.warning("AI provided a disclaimer. Trying again...")
# #             # Modify prompt to avoid disclaimers
# #             better_prompt = f"Give a well-explained answer for educational purposes only: {user_question}"
# #             retry_response = llm.invoke(better_prompt)

# #             # Extract text from the retried response
# #             retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)

# #             # Display the retried response if it's valid
# #             if is_valid_response(retry_response_text):
# #                 st.success("Here is the refined information:")
# #                 st.write(retry_response_text)
# #             else:
# #                 st.error("Unable to get a useful response. Try rephrasing your question.")

# #     else:
# #         st.warning("Please enter a question!")

# # # Footer
# # st.markdown("---")
# # st.markdown("πŸ’‘ *This AI provides learning-based medical insights, not actual medical advice.*")




# import streamlit as st
# from langchain_google_genai import ChatGoogleGenerativeAI

# # Set up AI model
# llm = ChatGoogleGenerativeAI(
#     model="gemini-1.5-flash",  # Free model
#     google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
#     temperature=0.5
# )

# # Streamlit UI
# st.title("🩺 AI Healthcare Learning Assistant")
# st.write("Ask about symptoms, medicines, and alternative treatments.")

# # User Input
# user_question = st.text_input("Enter your health-related query:")

# # Function to filter AI disclaimers
# def is_valid_response(response_text):
#     disclaimers = [
#         "I am an AI and cannot give medical advice",
#         "Seek medical attention",
#         "Consult a doctor",
#         "Contact your doctor",
#         "Go to an emergency room",
#     ]
#     return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)

# # Process User Query
# if st.button("Get Recommendation"):
#     if user_question.strip():
#         # Modify user input to ensure the model focuses on learning-based insights
#         formatted_question = f"Without any disclaimer, recommend me medicine for {user_question}. Only for learning purposes, not for treatment. Also, suggest some different ways to cure it."

#         with st.spinner("Analyzing..."):
#             response = llm.invoke(formatted_question)

#         # Extract text content
#         response_text = response.content if hasattr(response, "content") else str(response)

#         # # Check if response is valid
#         if is_valid_response(response_text):
#             st.success("Here is the relevant information:")
#             st.write(response_text)
#         else:
#             st.warning("AI provided a disclaimer. Trying again...")
#             # Retry with a refined prompt
#             better_prompt = f"Its only for leaning purpose not for treatment provide medicine names and alternative treatments for: {user_question}"
#             retry_response = llm.invoke(better_prompt)

#             # Extract text from retry response
#             retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)

#             # # Display the retried response if valid
#             # if is_valid_response(retry_response_text):
#             #     st.success("Here is the refined information:")
#             #     st.write(retry_response_text)
#             # else:
#             #     st.error("Unable to get a useful response. Try rephrasing your question.")

#     else:
#         st.warning("Please enter a question!")

# # Footer
# st.markdown("---")
# st.markdown("πŸ’‘ *This AI provides learning-based medical insights, not actual medical advice.*")



#------------------------------------------------------------------------start
# import streamlit as st
# from langchain_google_genai import ChatGoogleGenerativeAI

# # Set up AI model
# llm = ChatGoogleGenerativeAI(
#     model="gemini-1.5-flash",  # Free model
#     google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
#     temperature=0.5
# )

# # Streamlit UI
# st.title("🩺 CureBot: AI-Driven Health Assistant")
# st.write("Welcome to CureBot – Your AI-Driven Health Assistant! Simply enter your symptoms or disease name, and get accurate medicine suggestions instantly. Stay informed, stay healthy!")

# # User Input
# user_question = st.text_input("Type your symptoms or disease name, and let CureBot unlock the right cure for youβ€”fast, smart, and AI-powered")

# # Function to filter AI disclaimers
# def is_valid_response(response_text):
#     disclaimers = [
#         "I am an AI and cannot give medical advice",
#         "Seek medical attention",
#         "Consult a doctor",
#         "Contact your doctor",
#         "Go to an emergency room",
    # ]
#     return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)

# # Process User Query
# if st.button("Get Recommendation"):
#     if user_question.strip():
#         # Ensure the AI provides both medicine and alternative treatments
#         formatted_question = (
#             f"Without any disclaimer, recommend medicine for {user_question}. "
#             f"5 medicine names "
#             f"Also, provide alternative treatments such as home remedies, lifestyle changes, exercises, or dietary suggestions. "
#             f"Only for learning purposes, not for treatment."
#         )

#         with st.spinner("Analyzing..."):
#         #     response = llm.invoke(formatted_question)

        # # Extract text content
        # response_text = response.content if hasattr(response, "content") else str(response)

        # # Check if response is valid
        # if is_valid_response(response_text):
        #     st.success("✨ Analysis complete! Here are the best medicine recommendations for you: πŸ”½")
        #     st.write(response_text)
        # else:
        #     st.warning("⚠️ Oops! It looks like the input is unclear or incorrect. Please enter a valid disease name or symptoms to get accurate recommendations")
        #     # Retry with a refined prompt
        #     better_prompt = (
        #         f"Strictly provide a detailed answer including:\n"
        #         f"1. Medicine names\n"
        #         f"2. Home remedies\n"
        #         f"3. Lifestyle changes\n"
        #         f"4. Exercises\n"
        #         f"5. Diet recommendations\n"
        #         f"Do not include any disclaimers. The response should be clear and structured."
        #     )
        #     retry_response = llm.invoke(better_prompt)

        #     # Extract text from retry response
        #     retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)

#             # Display the retried response if valid
#             if is_valid_response(retry_response_text):
#                 st.success("Here is the refined information:")
#                 st.write(retry_response_text)
#             else:
#                 st.error("Unable to get a useful response. Try rephrasing your question.")

#     else:
#         st.warning("Please enter a question!")


# # Emergency Contact Button
# if st.button("Emergency Contact"):
#     st.subheader("πŸ“ž Emergency Contacts")
#     st.write("- πŸš‘ *Ambulance:* 102")
#     st.write("- πŸ₯ *LPU Hospital:* 18001024432")
#     st.write("- πŸ₯ *National Health Helpline:* 108")
#     st.write("- ☎ *COVID-19 Helpline:* 1075")
#     st.write("- πŸš“ *Police:* 100")

# # Footer
# st.markdown("---")

# st.markdown("πŸ”Ή Powered by Mayank, Wasim, Pravishank – Innovating Healthcare with AI! πŸ’‘ Your Health, Our Mission. πŸš€")



#------------------------------------------------------------------------end











import streamlit as st
import speech_recognition as sr
from deep_translator import GoogleTranslator
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import numpy as np

# Set up AI model
llm = ChatGoogleGenerativeAI(
    model="gemini-1.5-flash",
    google_api_key="YOUR_GOOGLE_API_KEY",
    temperature=0.5
)

# Custom CSS
st.markdown("""
    <style>
        .big-font { font-size:20px !important; }
        .stButton>button { background-color: #ff4b4b; color: white; font-size: 18px; }
        .stTextInput>div>div>input { font-size: 16px; }
    </style>
""", unsafe_allow_html=True)

# UI Setup
st.image("healthcare_logo.png", width=150)
st.title("🩺 CureBot: AI-Driven Health Assistant")
st.write("Empowering healthcare with AI-driven insights and recommendations!")

# Sidebar Navigation
st.sidebar.title("πŸ” Navigation")
option = st.sidebar.radio("Select an option:", ["Home", "Symptom Checker", "Doctor Connect", "Health Stats"])
translator = GoogleTranslator(source='auto', target='en')

if option == "Home":
    user_question = st.text_input("Type your symptoms or disease name:")
    
    if st.button("🎀 Speak Symptoms"):
        recognizer = sr.Recognizer()
        with sr.Microphone() as source:
            st.info("Listening...")
            try:
                audio = recognizer.listen(source)
                user_question = recognizer.recognize_google(audio)
                st.success(f"Recognized: {user_question}")
            except sr.UnknownValueError:
                st.error("Could not understand audio")
            except sr.RequestError:
                st.error("Error in speech recognition service")
    
    lang = st.selectbox("Select Language", ["English", "Hindi", "Spanish"])
    if lang != "English":
        user_question = translator.translate(user_question, src="en", dest=lang.lower()).text
    
    if st.button("Get Recommendation"):
        if user_question.strip():
            formatted_question = (
                f"Provide medicine and alternative treatments for {user_question}. "
                f"List medicines, home remedies, lifestyle changes, exercises, and diet suggestions."
            )
            
            with st.spinner("Analyzing..."):
                response = llm.invoke(formatted_question)
            response_text = response.content if hasattr(response, "content") else str(response)
            st.success("✨ Analysis complete! Here are your recommendations:")
            st.markdown(response_text)
        else:
            st.warning("Please enter a symptom or disease name!")
    
elif option == "Symptom Checker":
    st.subheader("πŸ”Ž AI Symptom Checker")
    st.write("Find possible diseases based on symptoms.")
    symptoms = st.text_area("Enter symptoms separated by commas:")
    if st.button("Check Symptoms"):
        symptom_query = f"Analyze these symptoms: {symptoms}. List possible diseases."
        response = llm.invoke(symptom_query)
        st.write(response.content if hasattr(response, "content") else str(response))

elif option == "Doctor Connect":
    st.subheader("πŸ₯ Find a Doctor Near You")
    st.write("Using Google Maps API to find the nearest hospitals and doctors.")
    st.write("(Feature Under Development)")

elif option == "Health Stats":
    st.subheader("πŸ“Š Health Trends & Data")
    
    diseases = ['Diabetes', 'Hypertension', 'Heart Disease', 'Asthma', 'Obesity']
    cases = np.random.randint(5000, 20000, size=len(diseases))
    
    fig, ax = plt.subplots()
    ax.barh(diseases, cases, color=['blue', 'green', 'red', 'purple', 'orange'])
    ax.set_xlabel("Number of Cases")
    ax.set_title("Disease Prevalence Statistics")
    st.pyplot(fig)

# Emergency Contact Section
st.sidebar.markdown("---")
st.sidebar.subheader("πŸ“ž Emergency Contacts")
st.sidebar.write("- πŸš‘ *Ambulance:* 102")
st.sidebar.write("- πŸ₯ *LPU Hospital:* 18001024432")
st.sidebar.write("- πŸ₯ *National Health Helpline:* 108")
st.sidebar.write("- ☎ *COVID-19 Helpline:* 1075")
st.sidebar.write("- πŸš“ *Police:* 100")

st.markdown("---")
st.markdown("πŸ”Ή Powered by Mayank, Wasim, Pravishank – Innovating Healthcare with AI! πŸ’‘ Your Health, Our Mission. πŸš€")