File size: 17,355 Bytes
c29cd9c b807cd3 16561ba c29cd9c 16561ba 0af226f 16561ba c29cd9c b807cd3 08f9319 b807cd3 08f9319 b807cd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# # # # # from langchain_google_genai import ChatGoogleGenerativeAI
# # # # # llm = ChatGoogleGenerativeAI(
# # # # # model="gemini-1.5-flash",
# # # # # google_api_key='AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE',
# # # # # temperature=0.2)
# # # # # poem = llm.invoke("Write a poem on love for burger")
# # # # # print(poem)
# # # # import streamlit as st
# # # # from langchain_google_genai import ChatGoogleGenerativeAI
# # # # # Set up the AI model
# # # # llm = ChatGoogleGenerativeAI(
# # # # model="gemini-1.5-flash", # Free model
# # # # google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # # # temperature=0.5
# # # # )
# # # # # Streamlit UI
# # # # st.title("π©Ί Healthcare AI Assistant")
# # # # st.write("Ask me anything about health, symptoms, diet, or general medical advice!")
# # # # # User Input
# # # # user_question = st.text_input("Enter your health-related question:")
# # # # # Process User Query
# # # # if st.button("Get Recommendation"):
# # # # if user_question.strip():
# # # # with st.spinner("Analyzing..."):
# # # # response = llm.invoke(user_question)
# # # # st.success("Recommendation:")
# # # # st.write(response)
# # # # else:
# # # # st.warning("Please enter a question!")
# # # # # Footer
# # # # st.markdown("---")
# # # # st.markdown("π‘ *Disclaimer: This AI assistant provides general health information. Always consult a doctor for medical concerns.*")
# # # import streamlit as st
# # # from langchain_google_genai import ChatGoogleGenerativeAI
# # # # Set up AI model
# # # llm = ChatGoogleGenerativeAI(
# # # model="gemini-1.5-flash", # Free model
# # # google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # # temperature=0.5
# # # )
# # # # Streamlit UI
# # # st.title("π©Ί AI Healthcare Learning Assistant")
# # # st.write("Ask me anything about healthcare, symptoms, diet, or medical learning!")
# # # # User Input
# # # user_question = st.text_input("Enter your healthcare question:")
# # # # Function to filter AI disclaimers
# # # def is_valid_response(response):
# # # disclaimers = [
# # # "I am an AI and cannot give medical advice",
# # # "Seek medical attention",
# # # "Consult a doctor",
# # # "Contact your doctor",
# # # "Go to an emergency room",
# # # ]
# # # return not any(phrase.lower() in response.lower() for phrase in disclaimers)
# # # # Process User Query
# # # if st.button("Get Information"):
# # # if user_question.strip():
# # # with st.spinner("Analyzing..."):
# # # response = llm.invoke(user_question)
# # # # Check if response is valid
# # # if is_valid_response(response):
# # # st.success("Here is the relevant information:")
# # # st.write(response)
# # # else:
# # # st.warning("AI provided a disclaimer. Trying again...")
# # # # Modify prompt to avoid disclaimers
# # # better_prompt = f"Give a well-explained answer for educational purposes only: {user_question}"
# # # retry_response = llm.invoke(better_prompt)
# # # # Display the retried response if it's valid
# # # if is_valid_response(retry_response):
# # # st.success("Here is the refined information:")
# # # st.write(retry_response)
# # # else:
# # # st.error("Unable to get a useful response. Try rephrasing your question.")
# # # else:
# # # st.warning("Please enter a question!")
# # # # Footer
# # # st.markdown("---")
# # # st.markdown("π‘ *This AI provides learning-based medical insights, not actual medical advice.*")
# # import streamlit as st
# # from langchain_google_genai import ChatGoogleGenerativeAI
# # # Set up AI model
# # llm = ChatGoogleGenerativeAI(
# # model="gemini-1.5-flash", # Free model
# # google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # temperature=0.5
# # )
# # # Streamlit UI
# # st.title("π©Ί AI Healthcare Learning Assistant")
# # st.write("Ask me anything about healthcare, symptoms, diet, or medical learning!")
# # # User Input
# # user_question = st.text_input("Enter your healthcare question:")
# # # Function to filter AI disclaimers
# # def is_valid_response(response_text):
# # disclaimers = [
# # "I am an AI and cannot give medical advice",
# # "Seek medical attention",
# # "Consult a doctor",
# # "Contact your doctor",
# # "Go to an emergency room",
# # ]
# # return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)
# # # Process User Query
# # if st.button("Get Information"):
# # if user_question.strip():
# # with st.spinner("Analyzing..."):
# # response = llm.invoke(user_question)
# # # Extract the text content from AIMessage
# # response_text = response.content if hasattr(response, "content") else str(response)
# # # Check if response is valid
# # if is_valid_response(response_text):
# # st.success("Here is the relevant information:")
# # st.write(response_text)
# # else:
# # st.warning("AI provided a disclaimer. Trying again...")
# # # Modify prompt to avoid disclaimers
# # better_prompt = f"Give a well-explained answer for educational purposes only: {user_question}"
# # retry_response = llm.invoke(better_prompt)
# # # Extract text from the retried response
# # retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)
# # # Display the retried response if it's valid
# # if is_valid_response(retry_response_text):
# # st.success("Here is the refined information:")
# # st.write(retry_response_text)
# # else:
# # st.error("Unable to get a useful response. Try rephrasing your question.")
# # else:
# # st.warning("Please enter a question!")
# # # Footer
# # st.markdown("---")
# # st.markdown("π‘ *This AI provides learning-based medical insights, not actual medical advice.*")
# import streamlit as st
# from langchain_google_genai import ChatGoogleGenerativeAI
# # Set up AI model
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-flash", # Free model
# google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# temperature=0.5
# )
# # Streamlit UI
# st.title("π©Ί AI Healthcare Learning Assistant")
# st.write("Ask about symptoms, medicines, and alternative treatments.")
# # User Input
# user_question = st.text_input("Enter your health-related query:")
# # Function to filter AI disclaimers
# def is_valid_response(response_text):
# disclaimers = [
# "I am an AI and cannot give medical advice",
# "Seek medical attention",
# "Consult a doctor",
# "Contact your doctor",
# "Go to an emergency room",
# ]
# return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)
# # Process User Query
# if st.button("Get Recommendation"):
# if user_question.strip():
# # Modify user input to ensure the model focuses on learning-based insights
# formatted_question = f"Without any disclaimer, recommend me medicine for {user_question}. Only for learning purposes, not for treatment. Also, suggest some different ways to cure it."
# with st.spinner("Analyzing..."):
# response = llm.invoke(formatted_question)
# # Extract text content
# response_text = response.content if hasattr(response, "content") else str(response)
# # # Check if response is valid
# if is_valid_response(response_text):
# st.success("Here is the relevant information:")
# st.write(response_text)
# else:
# st.warning("AI provided a disclaimer. Trying again...")
# # Retry with a refined prompt
# better_prompt = f"Its only for leaning purpose not for treatment provide medicine names and alternative treatments for: {user_question}"
# retry_response = llm.invoke(better_prompt)
# # Extract text from retry response
# retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)
# # # Display the retried response if valid
# # if is_valid_response(retry_response_text):
# # st.success("Here is the refined information:")
# # st.write(retry_response_text)
# # else:
# # st.error("Unable to get a useful response. Try rephrasing your question.")
# else:
# st.warning("Please enter a question!")
# # Footer
# st.markdown("---")
# st.markdown("π‘ *This AI provides learning-based medical insights, not actual medical advice.*")
#------------------------------------------------------------------------start
# import streamlit as st
# from langchain_google_genai import ChatGoogleGenerativeAI
# # Set up AI model
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-flash", # Free model
# google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# temperature=0.5
# )
# # Streamlit UI
# st.title("π©Ί CureBot: AI-Driven Health Assistant")
# st.write("Welcome to CureBot β Your AI-Driven Health Assistant! Simply enter your symptoms or disease name, and get accurate medicine suggestions instantly. Stay informed, stay healthy!")
# # User Input
# user_question = st.text_input("Type your symptoms or disease name, and let CureBot unlock the right cure for youβfast, smart, and AI-powered")
# # Function to filter AI disclaimers
# def is_valid_response(response_text):
# disclaimers = [
# "I am an AI and cannot give medical advice",
# "Seek medical attention",
# "Consult a doctor",
# "Contact your doctor",
# "Go to an emergency room",
# ]
# return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)
# # Process User Query
# if st.button("Get Recommendation"):
# if user_question.strip():
# # Ensure the AI provides both medicine and alternative treatments
# formatted_question = (
# f"Without any disclaimer, recommend medicine for {user_question}. "
# f"5 medicine names "
# f"Also, provide alternative treatments such as home remedies, lifestyle changes, exercises, or dietary suggestions. "
# f"Only for learning purposes, not for treatment."
# )
# with st.spinner("Analyzing..."):
# # response = llm.invoke(formatted_question)
# # Extract text content
# response_text = response.content if hasattr(response, "content") else str(response)
# # Check if response is valid
# if is_valid_response(response_text):
# st.success("β¨ Analysis complete! Here are the best medicine recommendations for you: π½")
# st.write(response_text)
# else:
# st.warning("β οΈ Oops! It looks like the input is unclear or incorrect. Please enter a valid disease name or symptoms to get accurate recommendations")
# # Retry with a refined prompt
# better_prompt = (
# f"Strictly provide a detailed answer including:\n"
# f"1. Medicine names\n"
# f"2. Home remedies\n"
# f"3. Lifestyle changes\n"
# f"4. Exercises\n"
# f"5. Diet recommendations\n"
# f"Do not include any disclaimers. The response should be clear and structured."
# )
# retry_response = llm.invoke(better_prompt)
# # Extract text from retry response
# retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)
# # Display the retried response if valid
# if is_valid_response(retry_response_text):
# st.success("Here is the refined information:")
# st.write(retry_response_text)
# else:
# st.error("Unable to get a useful response. Try rephrasing your question.")
# else:
# st.warning("Please enter a question!")
# # Emergency Contact Button
# if st.button("Emergency Contact"):
# st.subheader("π Emergency Contacts")
# st.write("- π *Ambulance:* 102")
# st.write("- π₯ *LPU Hospital:* 18001024432")
# st.write("- π₯ *National Health Helpline:* 108")
# st.write("- β *COVID-19 Helpline:*Β 1075")
# st.write("- π *Police:* 100")
# # Footer
# st.markdown("---")
# st.markdown("πΉ Powered by Mayank, Wasim, Pravishank β Innovating Healthcare with AI! π‘ Your Health, Our Mission. π")
#------------------------------------------------------------------------end
import streamlit as st
import speech_recognition as sr
from deep_translator import GoogleTranslator
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import numpy as np
# Set up AI model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
google_api_key="YOUR_GOOGLE_API_KEY",
temperature=0.5
)
# Custom CSS
st.markdown("""
<style>
.big-font { font-size:20px !important; }
.stButton>button { background-color: #ff4b4b; color: white; font-size: 18px; }
.stTextInput>div>div>input { font-size: 16px; }
</style>
""", unsafe_allow_html=True)
# UI Setup
st.image("healthcare_logo.png", width=150)
st.title("π©Ί CureBot: AI-Driven Health Assistant")
st.write("Empowering healthcare with AI-driven insights and recommendations!")
# Sidebar Navigation
st.sidebar.title("π Navigation")
option = st.sidebar.radio("Select an option:", ["Home", "Symptom Checker", "Doctor Connect", "Health Stats"])
translator = GoogleTranslator(source='auto', target='en')
if option == "Home":
user_question = st.text_input("Type your symptoms or disease name:")
if st.button("π€ Speak Symptoms"):
recognizer = sr.Recognizer()
with sr.Microphone() as source:
st.info("Listening...")
try:
audio = recognizer.listen(source)
user_question = recognizer.recognize_google(audio)
st.success(f"Recognized: {user_question}")
except sr.UnknownValueError:
st.error("Could not understand audio")
except sr.RequestError:
st.error("Error in speech recognition service")
lang = st.selectbox("Select Language", ["English", "Hindi", "Spanish"])
if lang != "English":
user_question = translator.translate(user_question, src="en", dest=lang.lower()).text
if st.button("Get Recommendation"):
if user_question.strip():
formatted_question = (
f"Provide medicine and alternative treatments for {user_question}. "
f"List medicines, home remedies, lifestyle changes, exercises, and diet suggestions."
)
with st.spinner("Analyzing..."):
response = llm.invoke(formatted_question)
response_text = response.content if hasattr(response, "content") else str(response)
st.success("β¨ Analysis complete! Here are your recommendations:")
st.markdown(response_text)
else:
st.warning("Please enter a symptom or disease name!")
elif option == "Symptom Checker":
st.subheader("π AI Symptom Checker")
st.write("Find possible diseases based on symptoms.")
symptoms = st.text_area("Enter symptoms separated by commas:")
if st.button("Check Symptoms"):
symptom_query = f"Analyze these symptoms: {symptoms}. List possible diseases."
response = llm.invoke(symptom_query)
st.write(response.content if hasattr(response, "content") else str(response))
elif option == "Doctor Connect":
st.subheader("π₯ Find a Doctor Near You")
st.write("Using Google Maps API to find the nearest hospitals and doctors.")
st.write("(Feature Under Development)")
elif option == "Health Stats":
st.subheader("π Health Trends & Data")
diseases = ['Diabetes', 'Hypertension', 'Heart Disease', 'Asthma', 'Obesity']
cases = np.random.randint(5000, 20000, size=len(diseases))
fig, ax = plt.subplots()
ax.barh(diseases, cases, color=['blue', 'green', 'red', 'purple', 'orange'])
ax.set_xlabel("Number of Cases")
ax.set_title("Disease Prevalence Statistics")
st.pyplot(fig)
# Emergency Contact Section
st.sidebar.markdown("---")
st.sidebar.subheader("π Emergency Contacts")
st.sidebar.write("- π *Ambulance:* 102")
st.sidebar.write("- π₯ *LPU Hospital:* 18001024432")
st.sidebar.write("- π₯ *National Health Helpline:* 108")
st.sidebar.write("- β *COVID-19 Helpline:* 1075")
st.sidebar.write("- π *Police:* 100")
st.markdown("---")
st.markdown("πΉ Powered by Mayank, Wasim, Pravishank β Innovating Healthcare with AI! π‘ Your Health, Our Mission. π")
|