Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoProcessor | |
| import torch | |
| from PIL import Image | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| models = { | |
| "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
| } | |
| processors = { | |
| "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True) | |
| } | |
| DESCRIPTION = "[Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)" | |
| kwargs = {} | |
| kwargs['torch_dtype'] = torch.bfloat16 | |
| user_prompt = '<|user|>\n' | |
| assistant_prompt = '<|assistant|>\n' | |
| prompt_suffix = "<|end|>\n" | |
| def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"): | |
| model = models[model_id] | |
| processor = processors[model_id] | |
| prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
| image = Image.fromarray(image).convert("RGB") | |
| inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
| generate_ids = model.generate(**inputs, | |
| max_new_tokens=1000, | |
| eos_token_id=processor.tokenizer.eos_token_id, | |
| ) | |
| generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
| response = processor.batch_decode(generate_ids, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False)[0] | |
| return response | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tab(label="Phi-3.5 Input"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Picture") | |
| model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct") | |
| text_input = gr.Textbox(label="Question") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text") | |
| submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) | |
| demo.queue(api_open=False) | |
| demo.launch(debug=True, show_api=False) | 
