File size: 9,906 Bytes
a147f3f
 
 
b08e344
a147f3f
 
 
 
 
 
 
b08e344
a147f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08e344
 
 
 
a147f3f
 
 
 
 
 
 
5390c45
a147f3f
 
 
 
 
 
 
 
 
 
b08e344
 
a147f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08e344
 
a147f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08e344
 
a147f3f
 
 
 
 
 
 
 
 
b08e344
a147f3f
 
 
 
 
 
 
 
 
b08e344
 
a147f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# some code blocks are taken from https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard/tree/main
import os

import gradio as gr
from huggingface_hub import HfApi

from src.css_html import custom_css
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3
from src.utils import (
    plot_leaderboard_scores,
    create_result_dataframes, create_result_dataframes_lite
)

TOKEN = os.environ.get("HF_TOKEN", None)
api = HfApi(TOKEN)


def filter_items(df, leaderboard_table, query):
    if query == "all":
        return df[leaderboard_table.columns]
    else:
        query = query[0]
    filtered_df = df[df["T"].str.contains(query, na=False)]
    return filtered_df[leaderboard_table.columns]


def search_table(df, leaderboard_table, query):
    filtered_df = df[(df["Model"].str.contains(query, case=False))]
    return filtered_df[leaderboard_table.columns]


demo = gr.Blocks(css=custom_css)
with demo:
    with gr.Row():
        gr.Markdown(
            """
            <div style="text-align: center;">
                <h1>🌍 AfroBench <span style='color: #e6b800;'>Leaderboard</span></h1>
            </div>
            <p style="text-align: center; font-size: 16px;">
                This leaderboard tracks the performance of multilingual models across <b>64 African languages</b>, <b>15 NLP tasks</b> and <b>22 datasets</b>,
                covering a range of tasks from POS tagging to question answering, summarization, and machine translation.
            </p>
            <p style="font-size: 14px; text-align: center;">
                It's based on the <a href="https://mcgill-nlp.github.io/AfroBench/index.html" target="_blank">AfroBench benchmark</a> and is designed
                to highlight both full-scale evaluations and cost-efficient subsets (AfroBench-Lite).<br><br>
                We aim to support better transparency and tooling for evaluating models in African languages.
            </p>
            """,
            elem_classes="markdown-text",
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.Column():
            with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
                with gr.TabItem("πŸ” Evaluation table", id=0):
                    with gr.Column():
                        view_source = gr.Radio(
                            label="πŸ“‚ Select Leaderboard Source",
                            choices=["afrobench", "afrobench_lite"],
                            value="afrobench",
                            interactive=True,
                        )

                        view_selector = gr.Dropdown(
                            label="πŸ“‚ Select View",
                            choices=["category", "task", "dataset"],
                            value="category",
                            interactive=True,
                        )

                        with gr.Accordion("➑️ See All Columns", open=False):
                            shown_columns = gr.CheckboxGroup(
                                choices=[],
                                value=[],
                                label="Select columns to display",
                                elem_id="column-select",
                                interactive=True,
                            )

                        leaderboard_df = gr.Dataframe(
                            label="Leaderboard",
                            interactive=False,
                            elem_id="leaderboard-table",
                            wrap=True,
                        )

                        view_options_map = {
                            "afrobench": ["category", "task", "dataset"],
                            "afrobench_lite": ["task", "dataset", "language"],
                        }

                        init_trigger = gr.Button(visible=False)


                        def update_view_selector(source):
                            options = view_options_map[source]
                            default = options[0]
                            return gr.update(choices=options, value=default), default


                        def refresh_table_and_columns(view_type, source):
                            path = "data/leaderboard_json/afrobench_lite.json" if source == "afrobench_lite" else "data/leaderboard_json/afrobench.json"
                            if source == "afrobench_lite":
                                df = create_result_dataframes_lite(path, level=view_type)
                            else:
                                df = create_result_dataframes(path, level=view_type)

                            df.reset_index(inplace=True)
                            df.rename(columns={"index": "Model"}, inplace=True)

                            metric_cols = [col for col in df.columns if col != "Model"]
                            df["Score"] = df[metric_cols].mean(axis=1).round(1)
                            all_cols = ["Model", "Score"] + sorted(
                                [col for col in df.columns if col not in ["Model", "Score"]])
                            df = df[all_cols]

                            shown_choices = sorted([col for col in df.columns if col not in ["Model", "Score"]])

                            return df, gr.update(choices=shown_choices, value=shown_choices), shown_choices


                        def refresh_table_only(view_type, selected_cols, source):
                            path = "data/leaderboard_json/afrobench_lite.json" if source == "afrobench_lite" else "data/leaderboard_json/afrobench.json"
                            if source == "afrobench_lite":
                                df = create_result_dataframes_lite(path, level=view_type)
                            else:
                                df = create_result_dataframes(path, level=view_type)

                            df.reset_index(inplace=True)
                            df.rename(columns={"index": "Model"}, inplace=True)

                            metric_cols = [col for col in df.columns if col != "Model"]
                            df["Score"] = df[metric_cols].mean(axis=1).round(1)

                            return df[["Model", "Score"] + [c for c in selected_cols if c in df.columns]]

                        # Trigger once on launch
                        def initialize(_):
                            return refresh_table_and_columns("category", "afrobench")

                        init_trigger.click(
                            fn=initialize,
                            inputs=[init_trigger],
                            outputs=[leaderboard_df, shown_columns, shown_columns],
                        )

                        view_source.change(
                            fn=update_view_selector,
                            inputs=[view_source],
                            outputs=[view_selector, view_selector],
                        ).then(
                            fn=refresh_table_and_columns,
                            inputs=[view_selector, view_source],
                            outputs=[leaderboard_df, shown_columns, shown_columns],
                        )

                        view_selector.change(
                            fn=refresh_table_and_columns,
                            inputs=[view_selector, view_source],
                            outputs=[leaderboard_df, shown_columns, shown_columns],
                        )

                        shown_columns.change(
                            fn=refresh_table_only,
                            inputs=[view_selector, shown_columns, view_source],
                            outputs=leaderboard_df,
                        )

                        demo.load(
                            fn=initialize,
                            inputs=[init_trigger],
                            outputs=[leaderboard_df, shown_columns, shown_columns],
                        )

                    gr.Markdown(
                        """
                    **Notes:**
                    - Score is the average across all the columns you're seeing in the leaderboard, based on the view and filters you’ve selected.
                    - For more details check the πŸ“ About section.
                    """,
                        elem_classes="markdown-text",
                    )

                with gr.TabItem("πŸ“Š Performance Plot", id=1):
                    with gr.Row():
                        model_score_plot = gr.Plot(label="Model Score Comparison")

                    # Update plot when view_source, view_selector, or shown_columns change
                    view_source.change(
                        fn=plot_leaderboard_scores,
                        inputs=[view_selector, shown_columns, view_source],
                        outputs=model_score_plot,
                    )
                    view_selector.change(
                        fn=plot_leaderboard_scores,
                        inputs=[view_selector, shown_columns, view_source],
                        outputs=model_score_plot,
                    )
                    shown_columns.change(
                        fn=plot_leaderboard_scores,
                        inputs=[view_selector, shown_columns, view_source],
                        outputs=model_score_plot,
                    )

                    demo.load(
                        fn=plot_leaderboard_scores,
                        inputs=[view_selector, shown_columns, view_source],
                        outputs=model_score_plot,
                    )

                with gr.TabItem("πŸ“ About", id=2):
                    gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
                with gr.TabItem("Submit results πŸš€", id=3):
                    gr.Markdown(SUBMISSION_TEXT_3)


# demo.launch()
demo.launch(server_name="0.0.0.0", server_port=7860)