File size: 9,060 Bytes
a147f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py
import json
import hashlib
import pandas as pd
import matplotlib.pyplot as plt
from dataclasses import dataclass
import plotly.graph_objects as go
from transformers import AutoConfig
from src.config import afrobench_path, afrobench_lite_path, lite_languages_path

# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False


def fields(raw_class):
    return [
        v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
    ]


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def styled_error(error):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"


def styled_warning(warn):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"


def styled_message(message):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"


def has_no_nan_values(df, columns):
    return df[columns].notna().all(axis=1)


def has_nan_values(df, columns):
    return df[columns].isna().any(axis=1)


def is_model_on_hub(model_name: str, revision: str) -> bool:
    try:
        AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
        return True, None

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
        )

    except Exception as e:
        print(f"Could not get the model config from the hub.: {e}")
        return False, "was not found on hub!"


def get_color(name):
    # Hash and map to a consistent color
    color = plt.cm.tab20(hash(name) % 20)  # 20 unique colors
    return f"rgb({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)})"


# def plot_model_scores(df):
#     # Assume df already has: Model, Score, and columns you filtered on
#     color_map = {
#         "LLaMa": "cornflowerblue",
#         "Aya": "lightcoral",
#         "Gemma": "mediumpurple",
#         "GPT": "seagreen",
#         "Gemini": "goldenrod",
#         "AfroLLaMa": "indianred",
#     }
#
#     def assign_color(model_name):
#         for key, color in color_map.items():
#             if key.lower() in model_name.lower():
#                 return color
#         return "gray"
#
#     df_sorted = df.copy()
#     df_sorted["Color"] = df_sorted["Model"].apply(assign_color)
#     df_sorted = df_sorted.sort_values("Score", ascending=False)
#
#     fig = go.Figure()
#     fig.add_trace(
#         go.Bar(
#             x=df_sorted["Score"],
#             y=df_sorted["Model"],
#             orientation='h',
#             marker_color=df_sorted["Color"],
#             hoverinfo="x+y",
#         )
#     )
#
#     fig.update_layout(
#         title="πŸ“Š Model Score Comparison",
#         xaxis_title="Average Score",
#         yaxis_title="Model",
#         height=600,
#         margin=dict(l=100, r=20, t=40, b=40),
#     )
#     return fig


# def plot_model_scores(df):
#     df_sorted = df.copy()
#     df_sorted["Color"] = df_sorted["Model"].apply(get_color)
#
#     fig = go.Figure()
#     fig.add_trace(
#         go.Bar(
#             x=df_sorted["Score"],
#             y=df_sorted["Model"],
#             orientation='h',
#             marker_color=df_sorted["Color"],
#             hoverinfo="x+y",
#         )
#     )
#
#     fig.update_layout(
#         title="πŸ“Š Model Score Comparison",
#         xaxis_title="Average Score",
#         yaxis_title="Model",
#         height=600,
#         margin=dict(l=100, r=20, t=40, b=40),
#     )
#     return fig

def plot_model_scores(df):
    df = df.copy()
    df["Color"] = df["Model"].apply(get_color)

    # Extract model size as string ("8B", "13B", or "UNK")
    def extract_size_str(model):
        parts = model.split()
        for part in parts:
            if part.endswith("B") and part[:-1].isdigit():
                return part
        return "UNK"

    # For plotting: numeric value of size (used only for x-axis)
    def size_to_num(size_str):
        return int(size_str[:-1]) if size_str != "UNK" else 100

    df["Size"] = df["Model"].apply(extract_size_str)
    df["Size Num"] = df["Size"].apply(size_to_num)

    size_order = df.drop_duplicates("Size").sort_values("Size Num")["Size"].tolist()

    fig = go.Figure()

    for _, row in df.iterrows():
        fig.add_trace(
            go.Scatter(
                x=[row["Size"]],
                y=[row["Score"]],
                mode="markers",
                name=row["Model"],
                marker=dict(
                    size=14,
                    color=row["Color"],
                    line=dict(width=1, color="black"),
                ),
                hovertemplate=f"<b>{row['Model']}</b><br>Score: {row['Score']}<br>Size: {row['Size']}",
                showlegend=True,
            )
        )

    fig.update_layout(
        title="πŸ“Š Model Score vs Size",
        xaxis=dict(
            title="Model Size",
            type="category",
            categoryorder="array",
            categoryarray=size_order
        ),
        yaxis_title="Average Score",
        height=600,
        margin=dict(l=60, r=60, t=40, b=40),
        legend=dict(title="Model", orientation="v", x=1.05, y=1),
    )

    return fig


def plot_leaderboard_scores(view_type, selected_cols, source):
    # Load leaderboard data
    if source == "afrobench_lite":
        df = create_result_dataframes_lite(afrobench_lite_path, level=view_type)
    else:
        df = create_result_dataframes(afrobench_path, level=view_type)

    df.reset_index(inplace=True)
    df.rename(columns={"index": "Model"}, inplace=True)
    metric_cols = [c for c in df.columns if c not in ["Model"]]

    if selected_cols:
        metric_cols = [c for c in selected_cols if c in metric_cols]

    df["Score"] = df[metric_cols].mean(axis=1).round(1)
    df_sorted = df.sort_values("Score", ascending=False)

    fig = plot_model_scores(df_sorted)
    return fig


def average_nested_scores(score_dict):
    return {
        model: {k: round(sum(v) / len(v), 1) for k, v in group.items()}
        for model, group in score_dict.items()
    }


def create_result_dataframes(json_file, level="category"):
    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    task_scores = {}
    dataset_scores = {}
    category_scores = {}

    for category, subtasks in data.items():
        for task, content in subtasks.items():
            for dataset, scores in content["datasets"].items():
                for model, score in scores.items():
                    # Task-level
                    task_scores.setdefault(model, {}).setdefault(task, []).append(score)

                    # Dataset-level
                    dataset_scores.setdefault(model, {})[dataset] = score

                    # Category-level
                    category_scores.setdefault(model, {}).setdefault(category, []).append(score)

    task_df = pd.DataFrame(average_nested_scores(task_scores)).T.sort_index()
    dataset_df = pd.DataFrame(dataset_scores).T.sort_index()
    category_df = pd.DataFrame(average_nested_scores(category_scores)).T.sort_index()

    return {
        "task": task_df,
        "dataset": dataset_df,
        "category": category_df,
    }.get(level, "Invalid level. Choose from: ['category', 'task', 'dataset']")


def create_result_dataframes_lite(json_file, level="task"):
    with open(json_file, "r", encoding="utf-8") as f:
        data = json.load(f)

    # Task-level: average across datasets in each task group
    task_scores = {}
    dataset_scores = {}

    for task, datasets in data.items():
        for dataset, scores in datasets.items():
            for model, score in scores.items():
                dataset_scores.setdefault(model, {})[dataset] = score
                task_scores.setdefault(model, {}).setdefault(task, []).append(score)

    task_level_df = pd.DataFrame({
        model: {task: round(sum(scores) / len(scores), 1) for task, scores in task_dict.items()}
        for model, task_dict in task_scores.items()
    }).T.sort_index()

    dataset_level_df = pd.DataFrame(dataset_scores).T.sort_index()

    level_map = {
        "task": task_level_df,
        "dataset": dataset_level_df,
    }

    if level == "language":
        with open(lite_languages_path, "r", encoding="utf-8") as f:
            data = json.load(f)
        language_level_df = pd.DataFrame(data).T.sort_index()
        level_map["language"] = language_level_df

    return level_map.get(level, "Invalid level. Choose from: ['task', 'dataset']")