Spaces:
Running
Running
File size: 9,060 Bytes
a147f3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py
import json
import hashlib
import pandas as pd
import matplotlib.pyplot as plt
from dataclasses import dataclass
import plotly.graph_objects as go
from transformers import AutoConfig
from src.config import afrobench_path, afrobench_lite_path, lite_languages_path
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
def fields(raw_class):
return [
v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
]
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def styled_error(error):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
def styled_warning(warn):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
def styled_message(message):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
def is_model_on_hub(model_name: str, revision: str) -> bool:
try:
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
return True, None
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
)
except Exception as e:
print(f"Could not get the model config from the hub.: {e}")
return False, "was not found on hub!"
def get_color(name):
# Hash and map to a consistent color
color = plt.cm.tab20(hash(name) % 20) # 20 unique colors
return f"rgb({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)})"
# def plot_model_scores(df):
# # Assume df already has: Model, Score, and columns you filtered on
# color_map = {
# "LLaMa": "cornflowerblue",
# "Aya": "lightcoral",
# "Gemma": "mediumpurple",
# "GPT": "seagreen",
# "Gemini": "goldenrod",
# "AfroLLaMa": "indianred",
# }
#
# def assign_color(model_name):
# for key, color in color_map.items():
# if key.lower() in model_name.lower():
# return color
# return "gray"
#
# df_sorted = df.copy()
# df_sorted["Color"] = df_sorted["Model"].apply(assign_color)
# df_sorted = df_sorted.sort_values("Score", ascending=False)
#
# fig = go.Figure()
# fig.add_trace(
# go.Bar(
# x=df_sorted["Score"],
# y=df_sorted["Model"],
# orientation='h',
# marker_color=df_sorted["Color"],
# hoverinfo="x+y",
# )
# )
#
# fig.update_layout(
# title="π Model Score Comparison",
# xaxis_title="Average Score",
# yaxis_title="Model",
# height=600,
# margin=dict(l=100, r=20, t=40, b=40),
# )
# return fig
# def plot_model_scores(df):
# df_sorted = df.copy()
# df_sorted["Color"] = df_sorted["Model"].apply(get_color)
#
# fig = go.Figure()
# fig.add_trace(
# go.Bar(
# x=df_sorted["Score"],
# y=df_sorted["Model"],
# orientation='h',
# marker_color=df_sorted["Color"],
# hoverinfo="x+y",
# )
# )
#
# fig.update_layout(
# title="π Model Score Comparison",
# xaxis_title="Average Score",
# yaxis_title="Model",
# height=600,
# margin=dict(l=100, r=20, t=40, b=40),
# )
# return fig
def plot_model_scores(df):
df = df.copy()
df["Color"] = df["Model"].apply(get_color)
# Extract model size as string ("8B", "13B", or "UNK")
def extract_size_str(model):
parts = model.split()
for part in parts:
if part.endswith("B") and part[:-1].isdigit():
return part
return "UNK"
# For plotting: numeric value of size (used only for x-axis)
def size_to_num(size_str):
return int(size_str[:-1]) if size_str != "UNK" else 100
df["Size"] = df["Model"].apply(extract_size_str)
df["Size Num"] = df["Size"].apply(size_to_num)
size_order = df.drop_duplicates("Size").sort_values("Size Num")["Size"].tolist()
fig = go.Figure()
for _, row in df.iterrows():
fig.add_trace(
go.Scatter(
x=[row["Size"]],
y=[row["Score"]],
mode="markers",
name=row["Model"],
marker=dict(
size=14,
color=row["Color"],
line=dict(width=1, color="black"),
),
hovertemplate=f"<b>{row['Model']}</b><br>Score: {row['Score']}<br>Size: {row['Size']}",
showlegend=True,
)
)
fig.update_layout(
title="π Model Score vs Size",
xaxis=dict(
title="Model Size",
type="category",
categoryorder="array",
categoryarray=size_order
),
yaxis_title="Average Score",
height=600,
margin=dict(l=60, r=60, t=40, b=40),
legend=dict(title="Model", orientation="v", x=1.05, y=1),
)
return fig
def plot_leaderboard_scores(view_type, selected_cols, source):
# Load leaderboard data
if source == "afrobench_lite":
df = create_result_dataframes_lite(afrobench_lite_path, level=view_type)
else:
df = create_result_dataframes(afrobench_path, level=view_type)
df.reset_index(inplace=True)
df.rename(columns={"index": "Model"}, inplace=True)
metric_cols = [c for c in df.columns if c not in ["Model"]]
if selected_cols:
metric_cols = [c for c in selected_cols if c in metric_cols]
df["Score"] = df[metric_cols].mean(axis=1).round(1)
df_sorted = df.sort_values("Score", ascending=False)
fig = plot_model_scores(df_sorted)
return fig
def average_nested_scores(score_dict):
return {
model: {k: round(sum(v) / len(v), 1) for k, v in group.items()}
for model, group in score_dict.items()
}
def create_result_dataframes(json_file, level="category"):
with open(json_file, "r", encoding="utf-8") as f:
data = json.load(f)
task_scores = {}
dataset_scores = {}
category_scores = {}
for category, subtasks in data.items():
for task, content in subtasks.items():
for dataset, scores in content["datasets"].items():
for model, score in scores.items():
# Task-level
task_scores.setdefault(model, {}).setdefault(task, []).append(score)
# Dataset-level
dataset_scores.setdefault(model, {})[dataset] = score
# Category-level
category_scores.setdefault(model, {}).setdefault(category, []).append(score)
task_df = pd.DataFrame(average_nested_scores(task_scores)).T.sort_index()
dataset_df = pd.DataFrame(dataset_scores).T.sort_index()
category_df = pd.DataFrame(average_nested_scores(category_scores)).T.sort_index()
return {
"task": task_df,
"dataset": dataset_df,
"category": category_df,
}.get(level, "Invalid level. Choose from: ['category', 'task', 'dataset']")
def create_result_dataframes_lite(json_file, level="task"):
with open(json_file, "r", encoding="utf-8") as f:
data = json.load(f)
# Task-level: average across datasets in each task group
task_scores = {}
dataset_scores = {}
for task, datasets in data.items():
for dataset, scores in datasets.items():
for model, score in scores.items():
dataset_scores.setdefault(model, {})[dataset] = score
task_scores.setdefault(model, {}).setdefault(task, []).append(score)
task_level_df = pd.DataFrame({
model: {task: round(sum(scores) / len(scores), 1) for task, scores in task_dict.items()}
for model, task_dict in task_scores.items()
}).T.sort_index()
dataset_level_df = pd.DataFrame(dataset_scores).T.sort_index()
level_map = {
"task": task_level_df,
"dataset": dataset_level_df,
}
if level == "language":
with open(lite_languages_path, "r", encoding="utf-8") as f:
data = json.load(f)
language_level_df = pd.DataFrame(data).T.sort_index()
level_map["language"] = language_level_df
return level_map.get(level, "Invalid level. Choose from: ['task', 'dataset']")
|