Spaces:
Sleeping
Sleeping
Create run_eval.py
Browse files- run_eval.py +122 -0
run_eval.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import datetime, os, subprocess, tempfile
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import pandas as pd, yaml, torch
|
6 |
+
from huggingface_hub import HfApi, login, hf_hub_download
|
7 |
+
from lm_eval import evaluator
|
8 |
+
from lm_eval.models.huggingface import HFLM
|
9 |
+
from peft import PeftModel
|
10 |
+
from transformers import (
|
11 |
+
AutoModelForCausalLM,
|
12 |
+
AutoModelForSequenceClassification,
|
13 |
+
AutoTokenizer,
|
14 |
+
)
|
15 |
+
|
16 |
+
CONFIGS = []
|
17 |
+
|
18 |
+
# βββββ Load all configs βββββ
|
19 |
+
if Path("adapters.yaml").exists():
|
20 |
+
CONFIGS.extend(yaml.safe_load(open("adapters.yaml"))["adapters"])
|
21 |
+
|
22 |
+
for yml in Path("manifests").glob("*.yaml"):
|
23 |
+
CONFIGS.append(yaml.safe_load(open(yml)))
|
24 |
+
|
25 |
+
if not CONFIGS:
|
26 |
+
raise RuntimeError("No adapter configs found in adapters.yaml or manifests/")
|
27 |
+
|
28 |
+
# βββββ Hugging Face auth βββββ
|
29 |
+
token = os.getenv("HF_TOKEN")
|
30 |
+
if not token or token == "***":
|
31 |
+
raise RuntimeError("HF_TOKEN secret is missing.")
|
32 |
+
login(token)
|
33 |
+
|
34 |
+
DATASET_REPO = os.environ["HF_DATASET_REPO"]
|
35 |
+
api = HfApi()
|
36 |
+
|
37 |
+
# βββββ Evaluate each adapter βββββ
|
38 |
+
all_rows = []
|
39 |
+
METRICS_TO_KEEP = {"acc", "accuracy", "acc_stderr", "f1", "exact_match"}
|
40 |
+
|
41 |
+
for cfg in CONFIGS:
|
42 |
+
base_model_id = cfg["base_model"]
|
43 |
+
adapter_repo = cfg["adapter_repo"]
|
44 |
+
adapter_type = cfg.get("adapter_type", "LoRA")
|
45 |
+
tasks = cfg["tasks"]
|
46 |
+
|
47 |
+
print(f"\nπ¦ Loading base model: {base_model_id}")
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_fast=True)
|
49 |
+
|
50 |
+
# Try causal first, fallback to encoder
|
51 |
+
try:
|
52 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_id)
|
53 |
+
is_encoder = False
|
54 |
+
except:
|
55 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(base_model_id)
|
56 |
+
is_encoder = True
|
57 |
+
|
58 |
+
peft_model = PeftModel.from_pretrained(base_model, adapter_repo)
|
59 |
+
merged_model = peft_model.merge_and_unload()
|
60 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
+
merged_model.to(device)
|
62 |
+
merged_model.eval()
|
63 |
+
|
64 |
+
with tempfile.TemporaryDirectory() as td:
|
65 |
+
merged_model.save_pretrained(td)
|
66 |
+
tokenizer.save_pretrained(td)
|
67 |
+
|
68 |
+
hf_lm = HFLM(
|
69 |
+
pretrained=td,
|
70 |
+
batch_size=8 if not is_encoder else 16,
|
71 |
+
device=device,
|
72 |
+
)
|
73 |
+
res = evaluator.simple_evaluate(model=hf_lm, tasks=tasks)
|
74 |
+
|
75 |
+
meta = {
|
76 |
+
"model_id": adapter_repo,
|
77 |
+
"adapter_type": adapter_type,
|
78 |
+
"trainable_params": cfg.get("trainable_params"),
|
79 |
+
"peak_gpu_mem_mb": torch.cuda.max_memory_allocated(device) // 1024**2 if torch.cuda.is_available() else None,
|
80 |
+
"run_date": datetime.datetime.utcnow().isoformat(timespec="seconds"),
|
81 |
+
"commit_sha": subprocess.check_output(["git", "rev-parse", "HEAD"]).strip().decode(),
|
82 |
+
}
|
83 |
+
|
84 |
+
for task, scores in res["results"].items():
|
85 |
+
for metric, value in scores.items():
|
86 |
+
if metric not in METRICS_TO_KEEP:
|
87 |
+
continue
|
88 |
+
all_rows.append({**meta, "task": task, "metric": metric, "value": value})
|
89 |
+
|
90 |
+
# βββββ Merge and upload results βββββ
|
91 |
+
df_new = pd.DataFrame(all_rows)
|
92 |
+
|
93 |
+
with tempfile.TemporaryDirectory() as tmp:
|
94 |
+
current_path = hf_hub_download(
|
95 |
+
repo_id=DATASET_REPO,
|
96 |
+
filename="data/peft_bench.parquet",
|
97 |
+
repo_type="dataset",
|
98 |
+
cache_dir=tmp,
|
99 |
+
local_dir=tmp,
|
100 |
+
local_dir_use_symlinks=False,
|
101 |
+
)
|
102 |
+
df_existing = pd.read_parquet(current_path)
|
103 |
+
df_combined = pd.concat([df_existing, df_new], ignore_index=True)
|
104 |
+
|
105 |
+
df_combined = (
|
106 |
+
df_combined
|
107 |
+
.sort_values("run_date")
|
108 |
+
.drop_duplicates(subset=["model_id", "task", "metric"], keep="last")
|
109 |
+
)
|
110 |
+
|
111 |
+
df_combined["value"] = pd.to_numeric(df_combined["value"], errors="coerce")
|
112 |
+
|
113 |
+
out = Path("peft_bench.parquet")
|
114 |
+
df_combined.to_parquet(out, index=False)
|
115 |
+
|
116 |
+
api.upload_file(
|
117 |
+
path_or_fileobj=out,
|
118 |
+
path_in_repo="data/peft_bench.parquet",
|
119 |
+
repo_id=DATASET_REPO,
|
120 |
+
repo_type="dataset",
|
121 |
+
commit_message=f"Add {len(CONFIGS)} new adapter run(s)",
|
122 |
+
)
|