Mdrnfox commited on
Commit
c485faf
·
verified ·
1 Parent(s): 921975c

Update run_eval.py

Browse files
Files changed (1) hide show
  1. run_eval.py +11 -11
run_eval.py CHANGED
@@ -134,7 +134,7 @@ for cfg in CONFIGS:
134
  res = evaluator.simple_evaluate(model=hf_lm, tasks=tasks)
135
  print(f"Raw results for {adapter_repo}: {res}")
136
  if not res.get("results"):
137
- print(f"⚠️ Empty results — likely a task or model compatibility issue for: {adapter_repo}")
138
  continue
139
  print(f"\nEvaluation raw result for {adapter_repo}:")
140
  print(res.get("results", {}))
@@ -164,15 +164,15 @@ for cfg in CONFIGS:
164
  for metric, value in scores.items():
165
  if value is None:
166
  continue
167
- metric_name, _, aggregation = metric.partition(",")
168
-
169
- all_rows.append({
170
- **meta,
171
- "task": task,
172
- "metric": metric_name,
173
- "aggregation": aggregation or None,
174
- "value": value
175
- })
176
 
177
 
178
  print(f"{len(all_rows) - count_before} rows added for {adapter_repo}")
@@ -196,7 +196,7 @@ with tempfile.TemporaryDirectory() as tmp:
196
  df_combined["value"] = pd.to_numeric(df_combined["value"], errors="coerce")
197
 
198
  print("\nFinal new results:")
199
- print(df_new[["model_id", "task", "metric", "value"]])
200
 
201
 
202
  out = Path("peft_bench.parquet")
 
134
  res = evaluator.simple_evaluate(model=hf_lm, tasks=tasks)
135
  print(f"Raw results for {adapter_repo}: {res}")
136
  if not res.get("results"):
137
+ print(f"Empty results — likely a task or model compatibility issue for: {adapter_repo}")
138
  continue
139
  print(f"\nEvaluation raw result for {adapter_repo}:")
140
  print(res.get("results", {}))
 
164
  for metric, value in scores.items():
165
  if value is None:
166
  continue
167
+ metric_name, _, aggregation = metric.partition(",")
168
+
169
+ all_rows.append({
170
+ **meta,
171
+ "task": task,
172
+ "metric": metric_name,
173
+ "aggregation": aggregation or None,
174
+ "value": value
175
+ })
176
 
177
 
178
  print(f"{len(all_rows) - count_before} rows added for {adapter_repo}")
 
196
  df_combined["value"] = pd.to_numeric(df_combined["value"], errors="coerce")
197
 
198
  print("\nFinal new results:")
199
+ print(df_new[["model_id", "task", "metric", "aggregation", "value"]])
200
 
201
 
202
  out = Path("peft_bench.parquet")