Mdrnfox commited on
Commit
cf4ffdb
Β·
verified Β·
1 Parent(s): 64306e8

Update run_eval.py

Browse files
Files changed (1) hide show
  1. run_eval.py +48 -15
run_eval.py CHANGED
@@ -34,10 +34,21 @@ login(token)
34
  DATASET_REPO = os.environ["HF_DATASET_REPO"]
35
  api = HfApi()
36
 
37
- # ───── Evaluate each adapter ─────
38
- all_rows = []
39
  METRICS_TO_KEEP = {"acc", "accuracy", "acc_stderr", "f1", "exact_match"}
 
 
 
 
 
 
 
 
 
 
 
 
40
 
 
41
  for cfg in CONFIGS:
42
  base_model_id = cfg["base_model"]
43
  adapter_repo = cfg["adapter_repo"]
@@ -45,34 +56,49 @@ for cfg in CONFIGS:
45
  tasks = cfg["tasks"]
46
 
47
  print(f"\nLoading base model: {base_model_id}")
48
- tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_fast=False)
 
 
 
 
 
 
49
 
50
- # Try causal first, fallback to encoder
51
  try:
52
  base_model = AutoModelForCausalLM.from_pretrained(
53
  base_model_id,
54
  trust_remote_code=True,
55
  use_safetensors=True
56
- )
57
  is_encoder = False
58
- except:
 
 
59
  base_model = AutoModelForSequenceClassification.from_pretrained(
60
  base_model_id,
61
  trust_remote_code=True,
62
  use_safetensors=True
63
  )
64
  is_encoder = True
 
 
65
  try:
66
  info = model_info(adapter_repo)
67
  files = [f.rfilename for f in info.siblings]
68
  if "adapter_config.json" not in files:
69
  print(f"{adapter_repo} is not a valid PEFT adapter (missing adapter_config.json)")
70
- continue # skip
71
  except Exception as e:
72
- print(f"Failed to inspect {adapter_repo}: {e}")
73
  continue
74
- peft_model = PeftModel.from_pretrained(base_model, adapter_repo)
75
- merged_model = peft_model.merge_and_unload()
 
 
 
 
 
 
76
  device = "cuda" if torch.cuda.is_available() else "cpu"
77
  merged_model.to(device)
78
  merged_model.eval()
@@ -81,12 +107,22 @@ for cfg in CONFIGS:
81
  merged_model.save_pretrained(td)
82
  tokenizer.save_pretrained(td)
83
 
 
 
 
 
 
84
  hf_lm = HFLM(
85
  pretrained=td,
86
  batch_size=8 if not is_encoder else 16,
87
  device=device,
88
  )
89
- res = evaluator.simple_evaluate(model=hf_lm, tasks=tasks)
 
 
 
 
 
90
 
91
  meta = {
92
  "model_id": adapter_repo,
@@ -117,15 +153,12 @@ with tempfile.TemporaryDirectory() as tmp:
117
  )
118
  df_existing = pd.read_parquet(current_path)
119
  df_combined = pd.concat([df_existing, df_new], ignore_index=True)
120
-
121
  df_combined = df_combined.sort_values("run_date")
122
-
123
-
124
  df_combined["value"] = pd.to_numeric(df_combined["value"], errors="coerce")
125
 
126
  print("Existing rows:", len(df_existing))
127
  print("New rows:", len(df_new))
128
- print("Combined rows (pre-dedup):", len(df_existing) + len(df_new))
129
  print("Final rows (after dedup):", len(df_combined))
130
 
131
  out = Path("peft_bench.parquet")
 
34
  DATASET_REPO = os.environ["HF_DATASET_REPO"]
35
  api = HfApi()
36
 
 
 
37
  METRICS_TO_KEEP = {"acc", "accuracy", "acc_stderr", "f1", "exact_match"}
38
+ all_rows = []
39
+
40
+ # ───── Safe tokenizer loading ─────
41
+ def load_tokenizer(model_id: str):
42
+ try:
43
+ return AutoTokenizer.from_pretrained(model_id, use_fast=True)
44
+ except Exception as e1:
45
+ print(f"Fast tokenizer failed for {model_id}: {e1}")
46
+ try:
47
+ return AutoTokenizer.from_pretrained(model_id, use_fast=False)
48
+ except Exception as e2:
49
+ raise RuntimeError(f"Failed to load tokenizer for {model_id}: {e2}") from e2
50
 
51
+ # ───── Evaluate each adapter ─────
52
  for cfg in CONFIGS:
53
  base_model_id = cfg["base_model"]
54
  adapter_repo = cfg["adapter_repo"]
 
56
  tasks = cfg["tasks"]
57
 
58
  print(f"\nLoading base model: {base_model_id}")
59
+ tokenizer = load_tokenizer(base_model_id)
60
+
61
+ if "llama" in base_model_id.lower():
62
+ try:
63
+ tokenizer.legacy = False
64
+ except:
65
+ pass
66
 
 
67
  try:
68
  base_model = AutoModelForCausalLM.from_pretrained(
69
  base_model_id,
70
  trust_remote_code=True,
71
  use_safetensors=True
72
+ )
73
  is_encoder = False
74
+ print("Loaded as Causal LM")
75
+ except Exception as e:
76
+ print(f"⚠️ Failed to load causal LM: {e}")
77
  base_model = AutoModelForSequenceClassification.from_pretrained(
78
  base_model_id,
79
  trust_remote_code=True,
80
  use_safetensors=True
81
  )
82
  is_encoder = True
83
+ print("Loaded as Sequence Classification model")
84
+
85
  try:
86
  info = model_info(adapter_repo)
87
  files = [f.rfilename for f in info.siblings]
88
  if "adapter_config.json" not in files:
89
  print(f"{adapter_repo} is not a valid PEFT adapter (missing adapter_config.json)")
90
+ continue
91
  except Exception as e:
92
+ print(f"Failed to inspect adapter {adapter_repo}: {e}")
93
  continue
94
+
95
+ try:
96
+ peft_model = PeftModel.from_pretrained(base_model, adapter_repo)
97
+ merged_model = peft_model.merge_and_unload()
98
+ except Exception as e:
99
+ print(f"Failed to apply adapter {adapter_repo}: {e}")
100
+ continue
101
+
102
  device = "cuda" if torch.cuda.is_available() else "cpu"
103
  merged_model.to(device)
104
  merged_model.eval()
 
107
  merged_model.save_pretrained(td)
108
  tokenizer.save_pretrained(td)
109
 
110
+ # Verify tokenizer object
111
+ if not hasattr(tokenizer, "vocab_size"):
112
+ print("Invalid tokenizer loaded. Skipping.")
113
+ continue
114
+
115
  hf_lm = HFLM(
116
  pretrained=td,
117
  batch_size=8 if not is_encoder else 16,
118
  device=device,
119
  )
120
+
121
+ try:
122
+ res = evaluator.simple_evaluate(model=hf_lm, tasks=tasks)
123
+ except Exception as e:
124
+ print(f"Evaluation failed for {adapter_repo}: {e}")
125
+ continue
126
 
127
  meta = {
128
  "model_id": adapter_repo,
 
153
  )
154
  df_existing = pd.read_parquet(current_path)
155
  df_combined = pd.concat([df_existing, df_new], ignore_index=True)
 
156
  df_combined = df_combined.sort_values("run_date")
 
 
157
  df_combined["value"] = pd.to_numeric(df_combined["value"], errors="coerce")
158
 
159
  print("Existing rows:", len(df_existing))
160
  print("New rows:", len(df_new))
161
+ print("Combined (pre-dedup):", len(df_existing) + len(df_new))
162
  print("Final rows (after dedup):", len(df_combined))
163
 
164
  out = Path("peft_bench.parquet")