Spaces:
Sleeping
Sleeping
Update run_eval.py
Browse files- run_eval.py +13 -3
run_eval.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import datetime, os, subprocess, tempfile
|
3 |
from pathlib import Path
|
4 |
|
|
|
5 |
import pandas as pd, yaml, torch
|
6 |
from huggingface_hub import HfApi, login, hf_hub_download, model_info
|
7 |
from lm_eval import evaluator
|
@@ -11,8 +12,10 @@ from transformers import (
|
|
11 |
AutoModelForCausalLM,
|
12 |
AutoModelForSequenceClassification,
|
13 |
AutoTokenizer,
|
|
|
14 |
)
|
15 |
|
|
|
16 |
CONFIGS = []
|
17 |
|
18 |
# βββββ Load all configs βββββ
|
@@ -67,6 +70,8 @@ for cfg in CONFIGS:
|
|
67 |
try:
|
68 |
base_model = AutoModelForCausalLM.from_pretrained(
|
69 |
base_model_id,
|
|
|
|
|
70 |
trust_remote_code=True,
|
71 |
use_safetensors=True
|
72 |
)
|
@@ -76,6 +81,8 @@ for cfg in CONFIGS:
|
|
76 |
print(f"β οΈ Failed to load causal LM: {e}")
|
77 |
base_model = AutoModelForSequenceClassification.from_pretrained(
|
78 |
base_model_id,
|
|
|
|
|
79 |
trust_remote_code=True,
|
80 |
use_safetensors=True
|
81 |
)
|
@@ -93,14 +100,17 @@ for cfg in CONFIGS:
|
|
93 |
continue
|
94 |
|
95 |
try:
|
96 |
-
peft_model = PeftModel.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
97 |
merged_model = peft_model.merge_and_unload()
|
98 |
except Exception as e:
|
99 |
print(f"Failed to apply adapter {adapter_repo}: {e}")
|
100 |
continue
|
101 |
|
102 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
103 |
-
merged_model.to(device)
|
104 |
merged_model.eval()
|
105 |
|
106 |
with tempfile.TemporaryDirectory() as td:
|
|
|
2 |
import datetime, os, subprocess, tempfile
|
3 |
from pathlib import Path
|
4 |
|
5 |
+
import gc
|
6 |
import pandas as pd, yaml, torch
|
7 |
from huggingface_hub import HfApi, login, hf_hub_download, model_info
|
8 |
from lm_eval import evaluator
|
|
|
12 |
AutoModelForCausalLM,
|
13 |
AutoModelForSequenceClassification,
|
14 |
AutoTokenizer,
|
15 |
+
BitsAndBytesConfig
|
16 |
)
|
17 |
|
18 |
+
|
19 |
CONFIGS = []
|
20 |
|
21 |
# βββββ Load all configs βββββ
|
|
|
70 |
try:
|
71 |
base_model = AutoModelForCausalLM.from_pretrained(
|
72 |
base_model_id,
|
73 |
+
device_map="auto",
|
74 |
+
torch_dtype=torch.float16,
|
75 |
trust_remote_code=True,
|
76 |
use_safetensors=True
|
77 |
)
|
|
|
81 |
print(f"β οΈ Failed to load causal LM: {e}")
|
82 |
base_model = AutoModelForSequenceClassification.from_pretrained(
|
83 |
base_model_id,
|
84 |
+
device_map="auto",
|
85 |
+
torch_dtype=torch.float16,
|
86 |
trust_remote_code=True,
|
87 |
use_safetensors=True
|
88 |
)
|
|
|
100 |
continue
|
101 |
|
102 |
try:
|
103 |
+
peft_model = PeftModel.from_pretrained(
|
104 |
+
base_model,
|
105 |
+
adapter_repo,
|
106 |
+
device_map="auto",
|
107 |
+
torch_dtype=torch.float16,
|
108 |
+
)
|
109 |
merged_model = peft_model.merge_and_unload()
|
110 |
except Exception as e:
|
111 |
print(f"Failed to apply adapter {adapter_repo}: {e}")
|
112 |
continue
|
113 |
|
|
|
|
|
114 |
merged_model.eval()
|
115 |
|
116 |
with tempfile.TemporaryDirectory() as td:
|