import gradio as gr, pandas as pd, datetime as dt from huggingface_hub import hf_hub_download DATASET = "Mdrnfox/peft-bench-metrics" PQ_PATH = "data/peft_bench.parquet" def load_table(): local = hf_hub_download(DATASET, PQ_PATH, repo_type="dataset") df_long = pd.read_parquet(local) wide = ( df_long .query("metric != 'alias'") # drop alias .pivot_table(index=["model_id", "task"], columns=["metric", "aggregation"], values="value") .reset_index() .sort_values(["task", "model_id"]) ) wide.columns = ['_'.join(filter(None, map(str, col))).strip() for col in wide.columns.values] return wide def refresh(): return gr.DataFrame.update(value=load_table(), headers=None), f"Last updated {dt.datetime.utcnow():%Y-%m-%d %H:%M UTC}" with gr.Blocks(title="PEFT-Bench") as demo: gr.Markdown("# PEFT-Bench Leaderboard") df = gr.DataFrame(value=load_table(), interactive=False, wrap=True) t = gr.Markdown(f"Last updated {dt.datetime.utcnow():%Y-%m-%d %H:%M UTC}") gr.Button("↻ Refresh").click(refresh, outputs=[df, t]) demo.launch()