Spaces:
Runtime error
Runtime error
⚡️ improve performance, enable longer text
Browse filesSigned-off-by: peter szemraj <[email protected]>
- app.py +3 -3
- summarize.py +11 -0
- utils.py +12 -3
app.py
CHANGED
|
@@ -73,11 +73,11 @@ def predict(
|
|
| 73 |
batch_length=token_batch_length,
|
| 74 |
**settings,
|
| 75 |
)
|
| 76 |
-
|
| 77 |
del model
|
| 78 |
del tokenizer
|
| 79 |
gc.collect()
|
| 80 |
-
|
| 81 |
return summaries
|
| 82 |
|
| 83 |
|
|
@@ -89,7 +89,7 @@ def proc_submission(
|
|
| 89 |
length_penalty: float,
|
| 90 |
repetition_penalty: float,
|
| 91 |
no_repeat_ngram_size: int,
|
| 92 |
-
max_input_length: int =
|
| 93 |
):
|
| 94 |
"""
|
| 95 |
proc_submission - a helper function for the gradio module to process submissions
|
|
|
|
| 73 |
batch_length=token_batch_length,
|
| 74 |
**settings,
|
| 75 |
)
|
| 76 |
+
|
| 77 |
del model
|
| 78 |
del tokenizer
|
| 79 |
gc.collect()
|
| 80 |
+
|
| 81 |
return summaries
|
| 82 |
|
| 83 |
|
|
|
|
| 89 |
length_penalty: float,
|
| 90 |
repetition_penalty: float,
|
| 91 |
no_repeat_ngram_size: int,
|
| 92 |
+
max_input_length: int = 4096,
|
| 93 |
):
|
| 94 |
"""
|
| 95 |
proc_submission - a helper function for the gradio module to process submissions
|
summarize.py
CHANGED
|
@@ -6,6 +6,8 @@ import torch
|
|
| 6 |
from tqdm.auto import tqdm
|
| 7 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def load_model_and_tokenizer(model_name: str) -> tuple:
|
| 11 |
"""
|
|
@@ -24,6 +26,15 @@ def load_model_and_tokenizer(model_name: str) -> tuple:
|
|
| 24 |
|
| 25 |
logging.info(f"Loaded model {model_name} to {device}")
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return model, tokenizer
|
| 28 |
|
| 29 |
|
|
|
|
| 6 |
from tqdm.auto import tqdm
|
| 7 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 8 |
|
| 9 |
+
from utils import validate_pytorch2
|
| 10 |
+
|
| 11 |
|
| 12 |
def load_model_and_tokenizer(model_name: str) -> tuple:
|
| 13 |
"""
|
|
|
|
| 26 |
|
| 27 |
logging.info(f"Loaded model {model_name} to {device}")
|
| 28 |
|
| 29 |
+
if validate_pytorch2():
|
| 30 |
+
try:
|
| 31 |
+
logging.info("Compiling model with Torch 2.0")
|
| 32 |
+
model = torch.compile(model)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
logging.warning(f"Could not compile model with Torch 2.0: {e}")
|
| 35 |
+
else:
|
| 36 |
+
logging.info("Torch 2.0 not detected, skipping compilation")
|
| 37 |
+
|
| 38 |
return model, tokenizer
|
| 39 |
|
| 40 |
|
utils.py
CHANGED
|
@@ -3,10 +3,20 @@
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import re
|
| 6 |
-
|
| 7 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
| 8 |
from natsort import natsorted
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def get_timestamp() -> str:
|
|
@@ -114,7 +124,6 @@ def saves_summary(summarize_output, outpath: str or Path = None, add_signature=T
|
|
| 114 |
outpath,
|
| 115 |
"a",
|
| 116 |
) as fo:
|
| 117 |
-
|
| 118 |
fo.write("\n" * 3)
|
| 119 |
fo.write(f"\n\nSection Scores:\n")
|
| 120 |
fo.writelines(scores_text)
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import re
|
| 6 |
+
import subprocess
|
| 7 |
from datetime import datetime
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
from natsort import natsorted
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def validate_pytorch2(torch_version: str = None):
|
| 15 |
+
torch_version = torch.__version__ if torch_version is None else torch_version
|
| 16 |
+
|
| 17 |
+
pattern = r"^2\.\d+(\.\d+)*"
|
| 18 |
+
|
| 19 |
+
return True if re.match(pattern, torch_version) else False
|
| 20 |
|
| 21 |
|
| 22 |
def get_timestamp() -> str:
|
|
|
|
| 124 |
outpath,
|
| 125 |
"a",
|
| 126 |
) as fo:
|
|
|
|
| 127 |
fo.write("\n" * 3)
|
| 128 |
fo.write(f"\n\nSection Scores:\n")
|
| 129 |
fo.writelines(scores_text)
|