Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
import subprocess
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
|
8 |
+
def convert_ts_to_mp4(dataset_name, file_name):
|
9 |
+
"""
|
10 |
+
Downloads a .ts video file from a Hugging Face dataset,
|
11 |
+
converts it to .mp4 using ffmpeg, and returns the path
|
12 |
+
to the .mp4 file.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
dataset_name (str): The name of the Hugging Face dataset.
|
16 |
+
file_name (str): The name of the .ts file within the dataset.
|
17 |
+
It should be just the filename, not the full path.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: The path to the converted .mp4 file, or None on error.
|
21 |
+
"""
|
22 |
+
try:
|
23 |
+
# 1. Load the dataset
|
24 |
+
dataset = load_dataset(dataset_name, streaming=True)
|
25 |
+
|
26 |
+
# 2. Find the file. This part assumes the filename is unique
|
27 |
+
# within the dataset. For more complex datasets, you might
|
28 |
+
# need a more sophisticated search (e.g., iterating through
|
29 |
+
# splits and checking file metadata). This also assumes
|
30 |
+
# that the dataset provides the files in a way that we can
|
31 |
+
# access them directly.
|
32 |
+
file_url = None
|
33 |
+
for split in dataset.keys(): # Iterate through the splits
|
34 |
+
for example in dataset[split]:
|
35 |
+
if "file" in example and os.path.basename(example["file"]) == file_name:
|
36 |
+
file_url = example["file"]
|
37 |
+
break
|
38 |
+
elif isinstance(example, dict): # Check for nested file paths.
|
39 |
+
for key, value in example.items():
|
40 |
+
if isinstance(value, str) and os.path.basename(value) == file_name:
|
41 |
+
file_url = value;
|
42 |
+
break
|
43 |
+
if file_url:
|
44 |
+
break
|
45 |
+
|
46 |
+
if not file_url:
|
47 |
+
return "Error: File not found in the dataset."
|
48 |
+
|
49 |
+
# 3. Download the .ts file to a temporary location
|
50 |
+
with tempfile.NamedTemporaryFile(suffix=".ts", delete=True) as ts_file:
|
51 |
+
# Use a simple download mechanism. For more robust
|
52 |
+
# downloading, especially with large files, consider
|
53 |
+
# using 'requests' with streaming.
|
54 |
+
try:
|
55 |
+
import urllib.request
|
56 |
+
urllib.request.urlretrieve(file_url, ts_file.name)
|
57 |
+
except Exception as e:
|
58 |
+
return f"Error downloading file: {e}"
|
59 |
+
|
60 |
+
# 4. Convert the .ts file to .mp4 using ffmpeg in a temporary location
|
61 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as mp4_file:
|
62 |
+
try:
|
63 |
+
subprocess.run(
|
64 |
+
[
|
65 |
+
"ffmpeg",
|
66 |
+
"-i",
|
67 |
+
ts_file.name,
|
68 |
+
"-c:v",
|
69 |
+
"libx264", # Use libx264 for H.264 encoding (common)
|
70 |
+
"-c:a",
|
71 |
+
"aac", # Use AAC for audio encoding (common)
|
72 |
+
"-y", # Overwrite output file if it exists
|
73 |
+
mp4_file.name,
|
74 |
+
],
|
75 |
+
check=True, # Raise an exception on non-zero exit code
|
76 |
+
stdout=subprocess.PIPE,
|
77 |
+
stderr=subprocess.PIPE,
|
78 |
+
)
|
79 |
+
except subprocess.CalledProcessError as e:
|
80 |
+
# ffmpeg failed. Return the error message.
|
81 |
+
error_message = f"FFmpeg conversion failed: {e.stderr.decode('utf-8')}"
|
82 |
+
print(error_message) # Print to console for debugging in Spaces
|
83 |
+
return error_message
|
84 |
+
|
85 |
+
# 5. Return the path to the .mp4 file
|
86 |
+
return mp4_file.name
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
return f"An error occurred: {e}"
|
90 |
+
|
91 |
+
|
92 |
+
def gradio_interface():
|
93 |
+
"""
|
94 |
+
Defines the Gradio interface for the application.
|
95 |
+
"""
|
96 |
+
inputs = [
|
97 |
+
gr.Textbox(
|
98 |
+
label="Hugging Face Dataset Name",
|
99 |
+
placeholder="e.g., 'PolyAI/minds-14'",
|
100 |
+
),
|
101 |
+
gr.Textbox(
|
102 |
+
label="TS File Name (within the dataset)",
|
103 |
+
placeholder="e.g., 'file_name.ts'",
|
104 |
+
),
|
105 |
+
]
|
106 |
+
outputs = gr.File(label="Converted MP4 File") # Use gr.File for downloadable files
|
107 |
+
|
108 |
+
title = "TS to MP4 Converter"
|
109 |
+
description = (
|
110 |
+
"Convert .ts video files from Hugging Face datasets to .mp4 format. "
|
111 |
+
"Provide the dataset name and the name of the .ts file. The converted "
|
112 |
+
".mp4 file will be available for download."
|
113 |
+
)
|
114 |
+
|
115 |
+
# Example Usage (Corrected)
|
116 |
+
article = """
|
117 |
+
Example Usage:
|
118 |
+
|
119 |
+
1. For the 'PolyAI/minds-14' dataset and the file 'audio/en/common_voice_en_7722.ts',
|
120 |
+
enter 'PolyAI/minds-14' in the \"Hugging Face Dataset Name\" field and
|
121 |
+
'common_voice_en_7722.ts' in the \"TS File Name\" field (note: the example dataset in the original prompt did not contain .ts files, so I've provided a placeholder. You'll need to adapt this to a dataset that actually *does* have .ts files).
|
122 |
+
2. Click the 'Submit' button.
|
123 |
+
3. The converted .mp4 file will be processed, and a download link will be provided.
|
124 |
+
"""
|
125 |
+
|
126 |
+
return gr.Interface(
|
127 |
+
fn=convert_ts_to_mp4,
|
128 |
+
inputs=inputs,
|
129 |
+
outputs=outputs,
|
130 |
+
title=title,
|
131 |
+
description=description,
|
132 |
+
article=article,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
gradio_interface().launch()
|