Mehak-Mazhar commited on
Commit
41c4b04
Β·
verified Β·
1 Parent(s): e3087a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -63
app.py CHANGED
@@ -1,64 +1,40 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load Question Answering Pipelines
5
+ qa_models = {
6
+ "πŸ€– DistilBERT (SQuAD)": pipeline("question-answering", model="distilbert-base-uncased-distilled-squad"),
7
+ "🌱 TinyRoBERTa (SQuAD2)": pipeline("question-answering", model="deepset/tinyroberta-squad2"),
8
+ "πŸ“˜ BERT Base (SQuAD)": pipeline("question-answering", model="bert-base-uncased", tokenizer="bert-base-uncased")
9
+ }
10
+
11
+ # Inference Function
12
+ def answer_question(question, context, model_name):
13
+ model = qa_models[model_name]
14
+ result = model(question=question, context=context)
15
+ return result["answer"]
16
+
17
+ # Gradio UI
18
+ with gr.Blocks() as demo:
19
+ gr.Markdown("<h1 style='text-align: center; color: darkorange; font-weight: bold;'>Question Answering with Lightweight LLMs</h1>")
20
+ gr.Markdown("<div style='text-align: center;'>Ask questions based on the provided context using free LLMs.</div>")
21
+
22
+ with gr.Row():
23
+ with gr.Column():
24
+ context = gr.Textbox(label="πŸ“„ Context", lines=6, placeholder="Paste your paragraph here...")
25
+ question = gr.Textbox(label="❓ Question", placeholder="Type your question here...")
26
+ model_choice = gr.Radio(
27
+ ["πŸ€– DistilBERT (SQuAD)", "🌱 TinyRoBERTa (SQuAD2)", "πŸ“˜ BERT Base (SQuAD)"],
28
+ label="Select a Model"
29
+ )
30
+ submit = gr.Button("Get Answer")
31
+
32
+ with gr.Column():
33
+ answer = gr.Textbox(label="βœ… Answer", lines=2)
34
+
35
+ submit.click(fn=answer_question, inputs=[question, context, model_choice], outputs=answer)
36
+
37
+ gr.Markdown("<div style='text-align: center; color: darkorange;'>Designed by Mehak Mazhar</div>")
38
+
39
+ # Set background color via CSS
40
+ demo.launch(css="body { background-color: #FFF3E0; }")