Spaces:
Runtime error
Runtime error
import torch | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
import gradio as gr | |
tokenizer = T5Tokenizer.from_pretrained('t5-small') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = T5ForConditionalGeneration.from_pretrained('cssupport/t5-small-awesome-text-to-sql') | |
model = model.to(device) | |
model.eval() | |
def generate_sql(input_prompt): | |
inputs = tokenizer(input_prompt, padding=True, truncation=True, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=512) | |
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_sql | |
def gradio_interface(tables, query): | |
input_prompt = f"tables:\n{tables}\nquery for:{query}" | |
return generate_sql(input_prompt) | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(lines=5, label="Context Tables", placeholder="Enter table definitions here..."), | |
gr.Textbox(lines=2, label="Query Description", placeholder="Enter your SQL query here...") | |
], | |
outputs=gr.Textbox(label="Generated SQL Query", placeholder=""), | |
title="Text to SQL Generator", | |
examples=[ | |
["CREATE TABLE student_course_attendance (student_id VARCHAR); CREATE TABLE students (student_id VARCHAR);", "List the id of students who never attends courses?"] | |
] | |
) | |
iface.launch() | |