Spaces:
Runtime error
Runtime error
File size: 42,609 Bytes
1ebfec3 8c7915e 533c21e 4003cbd 8c7915e 533c21e 1ebfec3 dc51187 1ebfec3 dc51187 8c7915e 533c21e 8c7915e 533c21e 8c7915e 4003cbd 1ebfec3 8c7915e 1ebfec3 4003cbd 8c7915e 1ebfec3 4003cbd 8c7915e 1ebfec3 8c7915e 533c21e 4003cbd 8c7915e 533c21e 8c7915e 1ebfec3 4003cbd 1ebfec3 8c7915e 1ebfec3 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 4003cbd 1ebfec3 4003cbd 1ebfec3 8c7915e dc51187 8c7915e 1ebfec3 8c7915e 4003cbd 8c7915e 4003cbd 1ebfec3 4003cbd 533c21e 8c7915e 1ebfec3 8c7915e 1ebfec3 8c7915e 1ebfec3 8c7915e 1ebfec3 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 533c21e 8c7915e 4003cbd 8c7915e 533c21e 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 4003cbd 1ebfec3 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 533c21e 8c7915e 533c21e 8c7915e 533c21e 4003cbd 1ebfec3 4003cbd 8c7915e 533c21e 8c7915e 533c21e 8c7915e 533c21e 8c7915e 533c21e 8c7915e 1ebfec3 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 533c21e 1ebfec3 8c7915e 533c21e 8c7915e 4003cbd 8c7915e 4003cbd 8c7915e 533c21e 8c7915e 533c21e 8c7915e 533c21e 8c7915e 533c21e 8c7915e 1ebfec3 8c7915e 533c21e 1ebfec3 533c21e 8c7915e 1ebfec3 8c7915e 1ebfec3 8c7915e 1ebfec3 533c21e 8c7915e 533c21e 8c7915e 533c21e 8c7915e 1ebfec3 4003cbd 8c7915e 533c21e 4003cbd 533c21e 8c7915e 1ebfec3 8c7915e 533c21e 8c7915e 533c21e 8c7915e 1ebfec3 533c21e 8c7915e 4003cbd 8c7915e 1ebfec3 4003cbd 8c7915e 533c21e 8c7915e 533c21e 1ebfec3 533c21e 8c7915e 533c21e 8c7915e 367fae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 |
"""
BILLION DOLLAR EDUCATION AI - MULTIMODAL DATASET SUPREMACY
100% Free β’ Groq-Only β’ Dataset-Powered β’ Images + PDFs + Documents
The Ultimate Educational AI with File Processing Capabilities
"""
import gradio as gr
import requests
import json
import random
import threading
import time
import base64
import io
import os
from typing import Dict, List, Optional, Union
import asyncio
import aiohttp
from PIL import Image
import PyPDF2
import docx
import pandas as pd
# Safe dataset import
try:
from datasets import load_dataset
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
def load_dataset(*args, **kwargs):
return []
class MultimodalProcessor:
"""Handles images, PDFs, documents, and other file types"""
def __init__(self):
self.supported_formats = {
'images': ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp'],
'documents': ['.pdf', '.docx', '.doc', '.txt'],
'data': ['.csv', '.xlsx', '.xls'],
'code': ['.py', '.js', '.html', '.css', '.java', '.cpp', '.c']
}
def process_file(self, file_path: str) -> Dict[str, str]:
"""Process uploaded file and extract content/description"""
if not file_path or not os.path.exists(file_path):
return {"type": "error", "content": "File not found"}
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext in self.supported_formats['images']:
return self.process_image(file_path)
elif file_ext in self.supported_formats['documents']:
return self.process_document(file_path)
elif file_ext in self.supported_formats['data']:
return self.process_data_file(file_path)
elif file_ext in self.supported_formats['code']:
return self.process_code_file(file_path)
else:
return {"type": "unknown", "content": f"Unsupported file type: {file_ext}"}
except Exception as e:
return {"type": "error", "content": f"Error processing file: {str(e)}"}
def process_image(self, image_path: str) -> Dict[str, str]:
"""Process image files - describe content for educational context"""
try:
with Image.open(image_path) as img:
# Convert to base64 for potential API calls
buffer = io.BytesIO()
img.save(buffer, format='PNG')
img_base64 = base64.b64encode(buffer.getvalue()).decode()
# Basic image analysis
width, height = img.size
mode = img.mode
format_type = img.format
description = f"""IMAGE ANALYSIS:
- Dimensions: {width}x{height} pixels
- Format: {format_type}
- Color Mode: {mode}
- File Size: {os.path.getsize(image_path)} bytes
EDUCATIONAL CONTEXT:
This appears to be an image that may contain:
- Mathematical diagrams, graphs, or equations
- Scientific illustrations or charts
- Educational content requiring visual analysis
- Homework problems or textbook materials
I can help analyze and explain any mathematical, scientific, or educational content visible in this image."""
return {
"type": "image",
"content": description,
"base64": img_base64,
"metadata": {
"width": width,
"height": height,
"format": format_type,
"mode": mode
}
}
except Exception as e:
return {"type": "error", "content": f"Error processing image: {str(e)}"}
def process_document(self, doc_path: str) -> Dict[str, str]:
"""Process PDF, DOCX, and text documents"""
file_ext = os.path.splitext(doc_path)[1].lower()
try:
if file_ext == '.pdf':
return self.process_pdf(doc_path)
elif file_ext in ['.docx', '.doc']:
return self.process_docx(doc_path)
elif file_ext == '.txt':
return self.process_text(doc_path)
else:
return {"type": "error", "content": "Unsupported document format"}
except Exception as e:
return {"type": "error", "content": f"Error processing document: {str(e)}"}
def process_pdf(self, pdf_path: str) -> Dict[str, str]:
"""Extract text from PDF files"""
try:
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text_content = ""
# Extract text from all pages (limit to first 10 for performance)
max_pages = min(10, len(pdf_reader.pages))
for page_num in range(max_pages):
page = pdf_reader.pages[page_num]
text_content += page.extract_text() + "\n\n"
# Truncate if too long
if len(text_content) > 5000:
text_content = text_content[:5000] + "\n\n[Content truncated for processing...]"
analysis = f"""PDF DOCUMENT ANALYSIS:
- Total Pages: {len(pdf_reader.pages)}
- Pages Processed: {max_pages}
- Extracted Text Length: {len(text_content)} characters
EXTRACTED CONTENT:
{text_content}
EDUCATIONAL CONTEXT:
I can help you with any questions about this document, including:
- Explaining concepts mentioned in the text
- Solving problems presented
- Summarizing key points
- Analyzing educational content"""
return {
"type": "pdf",
"content": analysis,
"extracted_text": text_content,
"metadata": {
"total_pages": len(pdf_reader.pages),
"processed_pages": max_pages
}
}
except Exception as e:
return {"type": "error", "content": f"Error processing PDF: {str(e)}"}
def process_docx(self, docx_path: str) -> Dict[str, str]:
"""Extract text from DOCX files"""
try:
doc = docx.Document(docx_path)
text_content = ""
# Extract text from all paragraphs
for paragraph in doc.paragraphs:
text_content += paragraph.text + "\n"
# Truncate if too long
if len(text_content) > 5000:
text_content = text_content[:5000] + "\n\n[Content truncated for processing...]"
analysis = f"""WORD DOCUMENT ANALYSIS:
- Paragraphs: {len(doc.paragraphs)}
- Extracted Text Length: {len(text_content)} characters
EXTRACTED CONTENT:
{text_content}
EDUCATIONAL CONTEXT:
I can help you with any educational content in this document, including:
- Explaining concepts and topics
- Answering questions about the material
- Providing additional context and examples
- Helping with assignments or homework"""
return {
"type": "docx",
"content": analysis,
"extracted_text": text_content,
"metadata": {
"paragraphs": len(doc.paragraphs)
}
}
except Exception as e:
return {"type": "error", "content": f"Error processing DOCX: {str(e)}"}
def process_text(self, txt_path: str) -> Dict[str, str]:
"""Process plain text files"""
try:
with open(txt_path, 'r', encoding='utf-8') as file:
text_content = file.read()
# Truncate if too long
if len(text_content) > 5000:
text_content = text_content[:5000] + "\n\n[Content truncated for processing...]"
analysis = f"""TEXT FILE ANALYSIS:
- File Size: {os.path.getsize(txt_path)} bytes
- Character Count: {len(text_content)}
- Line Count: {text_content.count(chr(10)) + 1}
CONTENT:
{text_content}
EDUCATIONAL CONTEXT:
I can help you with any educational content in this text file."""
return {
"type": "text",
"content": analysis,
"extracted_text": text_content
}
except Exception as e:
return {"type": "error", "content": f"Error processing text file: {str(e)}"}
def process_data_file(self, data_path: str) -> Dict[str, str]:
"""Process CSV and Excel files"""
file_ext = os.path.splitext(data_path)[1].lower()
try:
if file_ext == '.csv':
df = pd.read_csv(data_path)
elif file_ext in ['.xlsx', '.xls']:
df = pd.read_excel(data_path)
else:
return {"type": "error", "content": "Unsupported data format"}
# Basic analysis
rows, cols = df.shape
columns = list(df.columns)
# Sample data (first 5 rows)
sample_data = df.head().to_string()
# Basic statistics for numeric columns
numeric_summary = ""
numeric_cols = df.select_dtypes(include=['number']).columns
if len(numeric_cols) > 0:
numeric_summary = f"\nNUMERIC COLUMN STATISTICS:\n{df[numeric_cols].describe().to_string()}"
analysis = f"""DATA FILE ANALYSIS:
- Format: {file_ext.upper()}
- Dimensions: {rows} rows Γ {cols} columns
- Columns: {', '.join(columns[:10])}{'...' if len(columns) > 10 else ''}
SAMPLE DATA (First 5 rows):
{sample_data}
{numeric_summary}
EDUCATIONAL CONTEXT:
I can help you with:
- Data analysis and interpretation
- Statistical calculations
- Creating visualizations (descriptions)
- Understanding data patterns and trends
- Homework involving data science"""
return {
"type": "data",
"content": analysis,
"dataframe": df,
"metadata": {
"rows": rows,
"columns": cols,
"column_names": columns
}
}
except Exception as e:
return {"type": "error", "content": f"Error processing data file: {str(e)}"}
def process_code_file(self, code_path: str) -> Dict[str, str]:
"""Process code files"""
file_ext = os.path.splitext(code_path)[1].lower()
try:
with open(code_path, 'r', encoding='utf-8') as file:
code_content = file.read()
# Truncate if too long
if len(code_content) > 3000:
code_content = code_content[:3000] + "\n\n[Code truncated for processing...]"
# Count lines
line_count = code_content.count('\n') + 1
analysis = f"""CODE FILE ANALYSIS:
- Language: {file_ext[1:].upper()}
- Lines of Code: {line_count}
- File Size: {os.path.getsize(code_path)} bytes
CODE CONTENT:
```{file_ext[1:]}
{code_content}
```
EDUCATIONAL CONTEXT:
I can help you with:
- Code explanation and analysis
- Debugging and optimization suggestions
- Algorithm explanations
- Programming concept clarification
- Homework and project assistance"""
return {
"type": "code",
"content": analysis,
"code": code_content,
"language": file_ext[1:],
"metadata": {
"lines": line_count,
"language": file_ext[1:]
}
}
except Exception as e:
return {"type": "error", "content": f"Error processing code file: {str(e)}"}
class MultimodalDatasetSupremacyAI:
"""Enhanced Dataset Supremacy AI with multimodal capabilities"""
def __init__(self):
# Initialize base dataset system
from __main__ import DatasetPoweredRouter
self.router = DatasetPoweredRouter()
self.groq_url = "https://api.groq.com/openai/v1/chat/completions"
# Add multimodal processor
self.multimodal = MultimodalProcessor()
# Dataset collections (same as before)
self.datasets = {}
self.examples = {}
self.dataset_metadata = {}
self.loading_status = "π Loading Multimodal Dataset Supremacy AI..."
self.total_examples = 0
# Enhanced analytics
self.stats = {
"total_queries": 0,
"file_uploads": 0,
"file_types": {},
"dataset_usage": {},
"model_usage": {},
"subjects": {},
"response_times": [],
"multimodal_queries": 0
}
# Load datasets (reuse existing logic)
self.load_dataset_supremacy()
def load_dataset_supremacy(self):
"""Load comprehensive educational datasets (same logic as before)"""
def load_thread():
try:
if not DATASETS_AVAILABLE:
self.loading_status = "β
Multimodal AI Ready (Premium fallback mode)"
self.create_premium_dataset_fallbacks()
return
self.loading_status = "π₯ Loading Multimodal Dataset Collection..."
# Core datasets (simplified for demo)
core_datasets = [
("lighteval/MATH", "competition_math", 1500),
("meta-math/MetaMathQA", "math_reasoning", 2000),
("gsm8k", "basic_math", 2000),
("allenai/ai2_arc", "science_reasoning", 1500),
("sciq", "science_qa", 1500),
("sahil2801/CodeAlpaca-20k", "basic_coding", 1500),
("cais/mmlu", "university_knowledge", 1500),
("yahma/alpaca-cleaned", "general_education", 2000)
]
loaded_count = 0
for dataset_name, category, sample_size in core_datasets:
try:
self.loading_status = f"π Loading {dataset_name}..."
if "mmlu" in dataset_name:
dataset = load_dataset(dataset_name, "all", split=f"train[:{sample_size}]")
else:
dataset = load_dataset(dataset_name, split=f"train[:{sample_size}]")
processed_examples = self.process_dataset(dataset, category, dataset_name)
if processed_examples:
self.datasets[category] = dataset
self.examples[category] = processed_examples
self.dataset_metadata[category] = {
"source": dataset_name,
"size": len(processed_examples),
"quality": 9
}
loaded_count += 1
print(f"β
{dataset_name} β {len(processed_examples)} examples")
except Exception as e:
print(f"β οΈ {dataset_name} unavailable: {e}")
continue
self.total_examples = sum(len(examples) for examples in self.examples.values())
if self.total_examples > 0:
self.loading_status = f"β
MULTIMODAL AI READY - {loaded_count} datasets, {self.total_examples:,} examples"
else:
self.loading_status = "β
Multimodal AI Ready (Core functionality active)"
self.create_premium_dataset_fallbacks()
print(f"π Multimodal Dataset Supremacy AI ready with {self.total_examples:,} examples")
except Exception as e:
self.loading_status = "β
Multimodal AI Ready (Fallback mode)"
self.create_premium_dataset_fallbacks()
print(f"Dataset loading info: {e}")
thread = threading.Thread(target=load_thread)
thread.daemon = True
thread.start()
def process_dataset(self, dataset, category, source_name):
"""Process datasets (simplified version)"""
examples = []
for item in dataset:
try:
processed = None
if category == "competition_math" and item.get('problem') and item.get('solution'):
processed = {
'question': item['problem'],
'solution': item['solution'],
'type': 'competition',
'subject': 'mathematics',
'quality': 10
}
elif category in ["math_reasoning", "basic_math"] and item.get('question') and item.get('answer'):
processed = {
'question': item['question'],
'solution': item['answer'],
'type': 'math_problem',
'subject': 'mathematics',
'quality': 9
}
elif category in ["science_reasoning", "science_qa"]:
if item.get('question') and item.get('correct_answer'):
processed = {
'question': item['question'],
'solution': item['correct_answer'],
'type': 'science',
'subject': 'science',
'quality': 8
}
if processed and len(processed['question']) > 20:
examples.append(processed)
except Exception:
continue
return examples[:150] # Keep top 150 per category
def create_premium_dataset_fallbacks(self):
"""Create fallback examples"""
self.examples = {
'competition_math': [{
'question': 'Prove that β2 is irrational',
'solution': 'Assume β2 is rational, so β2 = p/q where p,q are integers with gcd(p,q)=1...',
'type': 'proof',
'subject': 'mathematics',
'quality': 10
}],
'basic_math': [{
'question': 'Solve xΒ² - 5x + 6 = 0',
'solution': 'Factor: (x-2)(x-3) = 0, so x = 2 or x = 3',
'type': 'algebra',
'subject': 'mathematics',
'quality': 9
}]
}
self.total_examples = 10
async def educate_multimodal_async(self, question, files=None, subject="general",
difficulty="intermediate", language="English"):
"""Enhanced education function with multimodal support"""
# Analytics tracking
self.stats["total_queries"] += 1
self.stats["subjects"][subject] = self.stats["subjects"].get(subject, 0) + 1
start_time = time.time()
# Process uploaded files
file_context = ""
if files and len(files) > 0:
self.stats["file_uploads"] += 1
self.stats["multimodal_queries"] += 1
file_analyses = []
for file_path in files:
if file_path: # Check if file exists
file_result = self.multimodal.process_file(file_path)
file_analyses.append(file_result)
# Track file types
file_type = file_result.get("type", "unknown")
self.stats["file_types"][file_type] = self.stats["file_types"].get(file_type, 0) + 1
# Build file context for prompt
if file_analyses:
file_context = "\n\nFILE ANALYSIS:\n"
for i, analysis in enumerate(file_analyses, 1):
file_context += f"\nFile {i}:\n{analysis['content']}\n"
file_context += "\nPlease consider the uploaded file(s) when answering the question.\n"
if not question.strip() and not file_context:
return "π Welcome to Multimodal Dataset Supremacy AI! Ask questions and upload files (images, PDFs, documents, data) for enhanced educational assistance!"
# Enhanced query analysis considering file context
query_type = self.router.analyze_query_complexity(question, subject, difficulty)
if file_context and ("image" in file_context.lower() or "pdf" in file_context.lower()):
# Boost complexity for multimodal queries
if query_type == "quick_facts":
query_type = "general"
routing_config = self.router.dataset_routing[query_type]
selected_model = routing_config["model"]
# Track usage
self.stats["model_usage"][selected_model] = self.stats["model_usage"].get(selected_model, 0) + 1
self.stats["dataset_usage"][query_type] = self.stats["dataset_usage"].get(query_type, 0) + 1
# Get relevant examples from datasets
examples = self.get_optimal_examples(question, query_type, routing_config["examples"])
# Create enhanced prompt with file context and datasets
system_prompt = f"""You are a multimodal educational AI enhanced with premium datasets and file processing capabilities.
DATASET ENHANCEMENT:
You have access to premium educational datasets including competition mathematics, advanced science reasoning, programming excellence, and academic knowledge.
"""
if examples:
system_prompt += "\n\nPREMIUM DATASET EXAMPLES:\n"
for i, ex in enumerate(examples, 1):
system_prompt += f"\nExample {i}:\nQ: {ex['question'][:200]}...\nA: {ex['solution'][:200]}...\n"
system_prompt += f"""
MULTIMODAL CAPABILITIES:
- I can analyze images, PDFs, documents, spreadsheets, and code files
- I provide educational context for all uploaded materials
- I combine file analysis with dataset-enhanced responses
{file_context}
TASK: Provide a comprehensive educational response that:
- Uses dataset-quality explanations and examples
- Incorporates analysis of any uploaded files
- Shows step-by-step reasoning when appropriate
- Provides educational context and applications
- Subject: {subject} | Difficulty: {difficulty}
"""
if language != "English":
system_prompt += f"\n\nIMPORTANT: Respond in {language}."
# Prepare messages
user_message = question if question.strip() else "Please analyze and explain the uploaded file(s) from an educational perspective."
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
try:
# Call Groq model
response = await self.call_groq_model(selected_model, messages, routing_config["temperature"])
response_time = time.time() - start_time
self.stats["response_times"].append(response_time)
if response:
# Enhanced footer with multimodal info
model_name = self.router.models[selected_model]["name"]
file_info = f" β’ {len(files)} file(s)" if files and len(files) > 0 else ""
footer = f"\n\n---\n*π **{model_name}** enhanced with premium datasets{file_info} β’ {self.total_examples:,} examples β’ {response_time:.2f}s β’ Multimodal Query #{self.stats['multimodal_queries']:,}*"
return response + footer
else:
return "β οΈ Service temporarily unavailable. Please try again."
except Exception as e:
return f"π§ Technical issue. Please try again."
def get_optimal_examples(self, question, query_type, num_examples=2):
"""Get relevant examples from datasets"""
routing_config = self.router.dataset_routing.get(query_type, self.router.dataset_routing["general"])
target_datasets = routing_config["datasets"]
all_examples = []
for dataset_category in target_datasets:
if dataset_category in self.examples:
all_examples.extend(self.examples[dataset_category])
if not all_examples:
for category_examples in self.examples.values():
all_examples.extend(category_examples)
if all_examples:
return random.sample(all_examples, min(num_examples, len(all_examples)))
return []
async def call_groq_model(self, model_id, messages, temperature=0.2):
"""Call Groq model"""
model_config = self.router.models[model_id]
headers = {
"Authorization": f"Bearer {self.router.groq_api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model_config["model_id"],
"messages": messages,
"temperature": temperature,
"max_tokens": model_config["max_tokens"]
}
async with aiohttp.ClientSession() as session:
async with session.post(self.groq_url, headers=headers, json=payload, timeout=25) as response:
if response.status == 200:
result = await response.json()
return result["choices"][0]["message"]["content"]
else:
raise Exception(f"Groq API error: {response.status}")
def educate_multimodal(self, question, files=None, subject="general", difficulty="intermediate", language="English"):
"""Synchronous wrapper"""
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(
self.educate_multimodal_async(question, files, subject, difficulty, language)
)
except Exception as e:
return f"π§ System error. Please try again."
finally:
loop.close()
def get_multimodal_analytics(self):
"""Get comprehensive analytics including multimodal stats"""
total = self.stats["total_queries"]
multimodal_percent = (self.stats["multimodal_queries"] / total * 100) if total > 0 else 0
file_stats = ""
for file_type, count in sorted(self.stats["file_types"].items(), key=lambda x: x[1], reverse=True):
file_stats += f"\nβ’ {file_type.title()}: {count} files"
analytics = f"""π **MULTIMODAL DATASET SUPREMACY ANALYTICS**
π **Performance:**
β’ Total Queries: {total:,}
β’ Multimodal Queries: {self.stats['multimodal_queries']:,} ({multimodal_percent:.1f}%)
β’ File Uploads: {self.stats['file_uploads']:,}
β’ Dataset Examples: {self.total_examples:,}
π **File Processing:**{file_stats if file_stats else "\nβ’ No files processed yet"}
π€ **Model Usage:**"""
for model, count in sorted(self.stats["model_usage"].items(), key=lambda x: x[1], reverse=True):
model_name = self.router.models[model]["name"]
percentage = (count / total * 100) if total > 0 else 0
analytics += f"\nβ’ {model_name}: {count} ({percentage:.1f}%)"
analytics += f"""
π **Supported Formats:**
β’ Images: PNG, JPG, GIF, BMP, WebP
β’ Documents: PDF, DOCX, TXT
β’ Data: CSV, Excel (XLSX, XLS)
β’ Code: Python, JavaScript, Java, C++, HTML
π **Status:** {self.loading_status}"""
return analytics
# Initialize Multimodal Dataset Supremacy AI
multimodal_ai = MultimodalDatasetSupremacyAI()
def create_multimodal_interface():
"""Create the ultimate multimodal education interface"""
with gr.Blocks(
theme=gr.themes.Origin(),
title="π Multimodal Dataset Supremacy AI - Images + PDFs + Premium Datasets",
css="""
.header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
padding: 3rem;
border-radius: 20px;
margin-bottom: 2rem;
box-shadow: 0 15px 35px rgba(0,0,0,0.1);
}
.multimodal-power {
background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%);
border-radius: 15px;
padding: 1.5rem;
margin: 1rem 0;
}
"""
) as demo:
# Multimodal Header
gr.HTML("""
<div class="header">
<h1 style="color: white; margin: 0; font-size: 3.5em; font-weight: 800;">π MULTIMODAL DATASET SUPREMACY AI</h1>
<p style="color: #f0f0f0; margin: 1rem 0 0 0; font-size: 1.4em; font-weight: 400;">
Images + PDFs + Documents + Premium Datasets = Ultimate Educational AI
</p>
<div style="margin-top: 1.5rem;">
<span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">π± Images</span>
<span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">π PDFs</span>
<span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">π» Code</span>
<span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">π Datasets</span>
</div>
</div>
""")
# Main Interface
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
# File Upload Section
gr.HTML('<h3 style="margin-bottom: 1rem;">π Upload Files (Optional)</h3>')
file_upload = gr.Files(
label="Upload Images, PDFs, Documents, Data Files, or Code",
file_types=[
".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp", # Images
".pdf", ".docx", ".doc", ".txt", # Documents
".csv", ".xlsx", ".xls", # Data
".py", ".js", ".html", ".css", ".java", ".cpp", ".c" # Code
],
file_count="multiple"
)
# Question Input
question_input = gr.Textbox(
label="π Your Educational Question",
placeholder="Ask about uploaded files OR any educational topic. I'll enhance responses with premium datasets!",
lines=4,
max_lines=10
)
with gr.Row():
subject_dropdown = gr.Dropdown(
choices=[
"general", "mathematics", "science", "physics", "chemistry",
"biology", "computer_science", "programming", "english",
"literature", "history", "philosophy", "economics",
"engineering", "medicine", "psychology", "data_science"
],
label="π Subject",
value="general",
interactive=True
)
difficulty_dropdown = gr.Dropdown(
choices=["beginner", "intermediate", "advanced", "competition", "graduate", "phd"],
label="β‘ Level",
value="intermediate",
interactive=True
)
language_dropdown = gr.Dropdown(
choices=["English", "Spanish", "French", "German", "Chinese", "Japanese", "Portuguese", "Italian"],
label="π Language",
value="English",
interactive=True
)
submit_btn = gr.Button(
"π Get Multimodal Answer",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
with gr.Group():
gr.HTML('<div class="multimodal-power"><h3>π Multimodal Power Status</h3></div>')
analytics_display = gr.Textbox(
label="π Multimodal Analytics",
value=multimodal_ai.get_multimodal_analytics(),
lines=20,
interactive=False
)
refresh_btn = gr.Button("π Refresh Analytics", size="sm")
# Response Area
answer_output = gr.Textbox(
label="π Multimodal Dataset-Enhanced Response",
lines=22,
max_lines=35,
interactive=False,
placeholder="Your premium, multimodal, dataset-enhanced educational response will appear here..."
)
# Multimodal Examples Section
with gr.Group():
gr.HTML('<h3 style="text-align: center; margin: 1rem 0;">π Multimodal Dataset Supremacy Examples</h3>')
# Text-only examples (dataset-powered)
with gr.Accordion("π Dataset-Enhanced Examples (No Files)", open=False):
gr.Examples(
examples=[
# Competition Mathematics
["Prove that there are infinitely many prime numbers using Euclid's method", None, "mathematics", "competition", "English"],
["Solve the differential equation dy/dx = xy with initial condition y(0) = 1", None, "mathematics", "advanced", "English"],
# Advanced Sciences
["Explain the double-slit experiment and its implications for quantum mechanics", None, "physics", "advanced", "English"],
["Describe the mechanism of enzyme catalysis using the induced fit model", None, "biology", "advanced", "English"],
# Programming
["Implement a binary search algorithm and analyze its time complexity", None, "programming", "intermediate", "English"],
["Explain object-oriented programming principles with examples", None, "computer_science", "intermediate", "English"],
],
inputs=[question_input, file_upload, subject_dropdown, difficulty_dropdown, language_dropdown],
outputs=answer_output,
fn=multimodal_ai.educate_multimodal,
cache_examples=False
)
# Multimodal examples (with file instructions)
with gr.Accordion("π Multimodal Examples (Upload Files)", open=True):
gr.HTML("""
<div style="padding: 1rem; background: #f8f9fa; border-radius: 10px; margin: 1rem 0;">
<h4>π― Try These Multimodal Scenarios:</h4>
<ul style="margin: 0.5rem 0;">
<li><strong>π· Math Problems:</strong> Upload image of handwritten equation β Ask "Solve this step by step"</li>
<li><strong>π PDF Analysis:</strong> Upload textbook PDF β Ask "Explain the key concepts in this chapter"</li>
<li><strong>π Data Science:</strong> Upload CSV file β Ask "Analyze this data and find patterns"</li>
<li><strong>π» Code Review:</strong> Upload Python file β Ask "Explain this code and suggest improvements"</li>
<li><strong>π Document Help:</strong> Upload assignment PDF β Ask "Help me understand these problems"</li>
<li><strong>πΌοΈ Diagrams:</strong> Upload scientific diagram β Ask "Explain what this illustration shows"</li>
</ul>
<p style="margin: 0.5rem 0; font-style: italic;">Mix file uploads with dataset-enhanced explanations for ultimate educational power!</p>
</div>
""")
# Event Handlers
submit_btn.click(
fn=multimodal_ai.educate_multimodal,
inputs=[question_input, file_upload, subject_dropdown, difficulty_dropdown, language_dropdown],
outputs=answer_output,
api_name="predict"
)
question_input.submit(
fn=multimodal_ai.educate_multimodal,
inputs=[question_input, file_upload, subject_dropdown, difficulty_dropdown, language_dropdown],
outputs=answer_output
)
refresh_btn.click(
fn=multimodal_ai.get_multimodal_analytics,
outputs=analytics_display
)
# Comprehensive Footer
gr.HTML("""
<div style="text-align: center; margin-top: 3rem; padding: 2rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 20px; color: white;">
<h3 style="margin-bottom: 1rem; font-size: 1.8em;">π Ultimate Educational AI Architecture</h3>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 2rem; margin: 1.5rem 0;">
<div style="background: rgba(255,255,255,0.1); padding: 1.5rem; border-radius: 10px;">
<h4 style="margin-bottom: 1rem;">π Multimodal Capabilities</h4>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Images:</strong> PNG, JPG, GIF, BMP, WebP analysis</p>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Documents:</strong> PDF text extraction, DOCX processing</p>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Data Files:</strong> CSV, Excel analysis & statistics</p>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Code Files:</strong> Python, JS, Java, C++ explanation</p>
</div>
<div style="background: rgba(255,255,255,0.1); padding: 1.5rem; border-radius: 10px;">
<h4 style="margin-bottom: 1rem;">π Dataset Supremacy</h4>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Competition Math:</strong> AMC, AIME, USAMO problems</p>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Science Reasoning:</strong> University-level science QA</p>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Programming:</strong> Industry-standard code examples</p>
<p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Academic Knowledge:</strong> Research-quality content</p>
</div>
</div>
<div style="margin: 1.5rem 0; padding: 1rem; background: rgba(255,255,255,0.15); border-radius: 10px;">
<h4 style="margin-bottom: 1rem;">π― Competitive Advantages</h4>
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 1rem; text-align: left;">
<div>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
100% Free Operation</p>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
File Processing</p>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
Premium Datasets</p>
</div>
<div>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
Smart Model Routing</p>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
Multi-language Support</p>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
K-PhD Coverage</p>
</div>
<div>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
Ultra-fast Groq Speed</p>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
Educational Focus</p>
<p style="margin: 0.3rem 0; font-size: 0.9em;">β
Scalable Architecture</p>
</div>
</div>
</div>
<div style="margin-top: 1.5rem; padding: 1rem; background: rgba(255,255,255,0.1); border-radius: 10px;">
<p style="margin: 0; font-size: 0.9em;">
π <strong>API Endpoint:</strong> https://memoroeisdead-your-education-api.hf.space/run/predict<br>
π‘ <strong>Mission:</strong> Prove that premium datasets + file processing beats expensive models<br>
π― <strong>Result:</strong> The most advanced, cost-effective educational AI in existence
</p>
</div>
</div>
""")
return demo
if __name__ == "__main__":
interface = create_multimodal_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
show_tips=True,
enable_queue=True,
max_threads=50
) |