File size: 42,609 Bytes
1ebfec3
8c7915e
 
 
533c21e
 
 
 
 
 
4003cbd
 
8c7915e
 
 
 
 
 
 
 
 
 
533c21e
1ebfec3
dc51187
 
 
1ebfec3
dc51187
 
 
 
8c7915e
 
 
533c21e
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
 
8c7915e
 
 
 
4003cbd
1ebfec3
8c7915e
 
1ebfec3
4003cbd
8c7915e
1ebfec3
4003cbd
8c7915e
 
 
 
1ebfec3
8c7915e
 
533c21e
4003cbd
8c7915e
 
533c21e
8c7915e
 
1ebfec3
4003cbd
1ebfec3
8c7915e
 
1ebfec3
 
8c7915e
4003cbd
8c7915e
 
 
 
 
 
 
 
 
 
 
4003cbd
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4003cbd
1ebfec3
4003cbd
1ebfec3
8c7915e
dc51187
8c7915e
 
1ebfec3
8c7915e
4003cbd
 
8c7915e
 
 
4003cbd
1ebfec3
4003cbd
 
533c21e
8c7915e
 
1ebfec3
8c7915e
1ebfec3
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ebfec3
8c7915e
 
1ebfec3
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
4003cbd
8c7915e
4003cbd
8c7915e
 
 
533c21e
8c7915e
 
 
 
4003cbd
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
8c7915e
 
4003cbd
8c7915e
 
 
 
 
 
4003cbd
8c7915e
 
4003cbd
1ebfec3
8c7915e
 
4003cbd
8c7915e
 
4003cbd
8c7915e
 
 
 
 
 
4003cbd
8c7915e
 
 
 
4003cbd
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
8c7915e
 
 
 
 
 
 
 
 
533c21e
 
8c7915e
 
533c21e
4003cbd
1ebfec3
4003cbd
8c7915e
 
 
 
533c21e
8c7915e
 
 
533c21e
8c7915e
533c21e
 
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
8c7915e
 
1ebfec3
8c7915e
4003cbd
8c7915e
 
 
4003cbd
8c7915e
533c21e
1ebfec3
 
8c7915e
 
 
533c21e
8c7915e
 
 
4003cbd
8c7915e
 
 
 
4003cbd
8c7915e
533c21e
8c7915e
 
 
 
 
533c21e
8c7915e
 
 
 
 
 
 
 
 
533c21e
 
8c7915e
 
533c21e
 
 
8c7915e
 
 
1ebfec3
8c7915e
 
 
 
 
 
 
533c21e
 
1ebfec3
533c21e
8c7915e
1ebfec3
 
8c7915e
 
 
1ebfec3
8c7915e
 
 
 
 
 
1ebfec3
 
533c21e
8c7915e
533c21e
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
 
8c7915e
 
 
 
 
 
1ebfec3
4003cbd
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
4003cbd
533c21e
8c7915e
 
 
 
 
 
 
 
 
 
 
1ebfec3
8c7915e
 
 
 
 
 
 
533c21e
 
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
8c7915e
 
 
 
 
1ebfec3
533c21e
 
8c7915e
 
 
 
4003cbd
 
8c7915e
 
 
1ebfec3
4003cbd
8c7915e
533c21e
8c7915e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533c21e
 
 
1ebfec3
533c21e
 
8c7915e
533c21e
 
 
 
8c7915e
 
 
 
367fae1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
"""
BILLION DOLLAR EDUCATION AI - MULTIMODAL DATASET SUPREMACY
100% Free β€’ Groq-Only β€’ Dataset-Powered β€’ Images + PDFs + Documents
The Ultimate Educational AI with File Processing Capabilities
"""

import gradio as gr
import requests
import json
import random
import threading
import time
import base64
import io
import os
from typing import Dict, List, Optional, Union
import asyncio
import aiohttp
from PIL import Image
import PyPDF2
import docx
import pandas as pd

# Safe dataset import
try:
    from datasets import load_dataset
    DATASETS_AVAILABLE = True
except ImportError:
    DATASETS_AVAILABLE = False
    def load_dataset(*args, **kwargs):
        return []

class MultimodalProcessor:
    """Handles images, PDFs, documents, and other file types"""
    
    def __init__(self):
        self.supported_formats = {
            'images': ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp'],
            'documents': ['.pdf', '.docx', '.doc', '.txt'],
            'data': ['.csv', '.xlsx', '.xls'],
            'code': ['.py', '.js', '.html', '.css', '.java', '.cpp', '.c']
        }
    
    def process_file(self, file_path: str) -> Dict[str, str]:
        """Process uploaded file and extract content/description"""
        if not file_path or not os.path.exists(file_path):
            return {"type": "error", "content": "File not found"}
        
        file_ext = os.path.splitext(file_path)[1].lower()
        
        try:
            if file_ext in self.supported_formats['images']:
                return self.process_image(file_path)
            elif file_ext in self.supported_formats['documents']:
                return self.process_document(file_path)
            elif file_ext in self.supported_formats['data']:
                return self.process_data_file(file_path)
            elif file_ext in self.supported_formats['code']:
                return self.process_code_file(file_path)
            else:
                return {"type": "unknown", "content": f"Unsupported file type: {file_ext}"}
        
        except Exception as e:
            return {"type": "error", "content": f"Error processing file: {str(e)}"}
    
    def process_image(self, image_path: str) -> Dict[str, str]:
        """Process image files - describe content for educational context"""
        try:
            with Image.open(image_path) as img:
                # Convert to base64 for potential API calls
                buffer = io.BytesIO()
                img.save(buffer, format='PNG')
                img_base64 = base64.b64encode(buffer.getvalue()).decode()
                
                # Basic image analysis
                width, height = img.size
                mode = img.mode
                format_type = img.format
                
                description = f"""IMAGE ANALYSIS:
- Dimensions: {width}x{height} pixels
- Format: {format_type}
- Color Mode: {mode}
- File Size: {os.path.getsize(image_path)} bytes

EDUCATIONAL CONTEXT:
This appears to be an image that may contain:
- Mathematical diagrams, graphs, or equations
- Scientific illustrations or charts  
- Educational content requiring visual analysis
- Homework problems or textbook materials

I can help analyze and explain any mathematical, scientific, or educational content visible in this image."""
                
                return {
                    "type": "image",
                    "content": description,
                    "base64": img_base64,
                    "metadata": {
                        "width": width,
                        "height": height,
                        "format": format_type,
                        "mode": mode
                    }
                }
                
        except Exception as e:
            return {"type": "error", "content": f"Error processing image: {str(e)}"}
    
    def process_document(self, doc_path: str) -> Dict[str, str]:
        """Process PDF, DOCX, and text documents"""
        file_ext = os.path.splitext(doc_path)[1].lower()
        
        try:
            if file_ext == '.pdf':
                return self.process_pdf(doc_path)
            elif file_ext in ['.docx', '.doc']:
                return self.process_docx(doc_path)
            elif file_ext == '.txt':
                return self.process_text(doc_path)
            else:
                return {"type": "error", "content": "Unsupported document format"}
                
        except Exception as e:
            return {"type": "error", "content": f"Error processing document: {str(e)}"}
    
    def process_pdf(self, pdf_path: str) -> Dict[str, str]:
        """Extract text from PDF files"""
        try:
            with open(pdf_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                text_content = ""
                
                # Extract text from all pages (limit to first 10 for performance)
                max_pages = min(10, len(pdf_reader.pages))
                for page_num in range(max_pages):
                    page = pdf_reader.pages[page_num]
                    text_content += page.extract_text() + "\n\n"
                
                # Truncate if too long
                if len(text_content) > 5000:
                    text_content = text_content[:5000] + "\n\n[Content truncated for processing...]"
                
                analysis = f"""PDF DOCUMENT ANALYSIS:
- Total Pages: {len(pdf_reader.pages)}
- Pages Processed: {max_pages}
- Extracted Text Length: {len(text_content)} characters

EXTRACTED CONTENT:
{text_content}

EDUCATIONAL CONTEXT:
I can help you with any questions about this document, including:
- Explaining concepts mentioned in the text
- Solving problems presented
- Summarizing key points
- Analyzing educational content"""
                
                return {
                    "type": "pdf",
                    "content": analysis,
                    "extracted_text": text_content,
                    "metadata": {
                        "total_pages": len(pdf_reader.pages),
                        "processed_pages": max_pages
                    }
                }
                
        except Exception as e:
            return {"type": "error", "content": f"Error processing PDF: {str(e)}"}
    
    def process_docx(self, docx_path: str) -> Dict[str, str]:
        """Extract text from DOCX files"""
        try:
            doc = docx.Document(docx_path)
            text_content = ""
            
            # Extract text from all paragraphs
            for paragraph in doc.paragraphs:
                text_content += paragraph.text + "\n"
            
            # Truncate if too long
            if len(text_content) > 5000:
                text_content = text_content[:5000] + "\n\n[Content truncated for processing...]"
            
            analysis = f"""WORD DOCUMENT ANALYSIS:
- Paragraphs: {len(doc.paragraphs)}
- Extracted Text Length: {len(text_content)} characters

EXTRACTED CONTENT:
{text_content}

EDUCATIONAL CONTEXT:
I can help you with any educational content in this document, including:
- Explaining concepts and topics
- Answering questions about the material
- Providing additional context and examples
- Helping with assignments or homework"""
            
            return {
                "type": "docx",
                "content": analysis,
                "extracted_text": text_content,
                "metadata": {
                    "paragraphs": len(doc.paragraphs)
                }
            }
            
        except Exception as e:
            return {"type": "error", "content": f"Error processing DOCX: {str(e)}"}
    
    def process_text(self, txt_path: str) -> Dict[str, str]:
        """Process plain text files"""
        try:
            with open(txt_path, 'r', encoding='utf-8') as file:
                text_content = file.read()
            
            # Truncate if too long
            if len(text_content) > 5000:
                text_content = text_content[:5000] + "\n\n[Content truncated for processing...]"
            
            analysis = f"""TEXT FILE ANALYSIS:
- File Size: {os.path.getsize(txt_path)} bytes
- Character Count: {len(text_content)}
- Line Count: {text_content.count(chr(10)) + 1}

CONTENT:
{text_content}

EDUCATIONAL CONTEXT:
I can help you with any educational content in this text file."""
            
            return {
                "type": "text",
                "content": analysis,
                "extracted_text": text_content
            }
            
        except Exception as e:
            return {"type": "error", "content": f"Error processing text file: {str(e)}"}
    
    def process_data_file(self, data_path: str) -> Dict[str, str]:
        """Process CSV and Excel files"""
        file_ext = os.path.splitext(data_path)[1].lower()
        
        try:
            if file_ext == '.csv':
                df = pd.read_csv(data_path)
            elif file_ext in ['.xlsx', '.xls']:
                df = pd.read_excel(data_path)
            else:
                return {"type": "error", "content": "Unsupported data format"}
            
            # Basic analysis
            rows, cols = df.shape
            columns = list(df.columns)
            
            # Sample data (first 5 rows)
            sample_data = df.head().to_string()
            
            # Basic statistics for numeric columns
            numeric_summary = ""
            numeric_cols = df.select_dtypes(include=['number']).columns
            if len(numeric_cols) > 0:
                numeric_summary = f"\nNUMERIC COLUMN STATISTICS:\n{df[numeric_cols].describe().to_string()}"
            
            analysis = f"""DATA FILE ANALYSIS:
- Format: {file_ext.upper()}
- Dimensions: {rows} rows Γ— {cols} columns
- Columns: {', '.join(columns[:10])}{'...' if len(columns) > 10 else ''}

SAMPLE DATA (First 5 rows):
{sample_data}

{numeric_summary}

EDUCATIONAL CONTEXT:
I can help you with:
- Data analysis and interpretation
- Statistical calculations
- Creating visualizations (descriptions)
- Understanding data patterns and trends
- Homework involving data science"""
            
            return {
                "type": "data",
                "content": analysis,
                "dataframe": df,
                "metadata": {
                    "rows": rows,
                    "columns": cols,
                    "column_names": columns
                }
            }
            
        except Exception as e:
            return {"type": "error", "content": f"Error processing data file: {str(e)}"}
    
    def process_code_file(self, code_path: str) -> Dict[str, str]:
        """Process code files"""
        file_ext = os.path.splitext(code_path)[1].lower()
        
        try:
            with open(code_path, 'r', encoding='utf-8') as file:
                code_content = file.read()
            
            # Truncate if too long
            if len(code_content) > 3000:
                code_content = code_content[:3000] + "\n\n[Code truncated for processing...]"
            
            # Count lines
            line_count = code_content.count('\n') + 1
            
            analysis = f"""CODE FILE ANALYSIS:
- Language: {file_ext[1:].upper()}
- Lines of Code: {line_count}
- File Size: {os.path.getsize(code_path)} bytes

CODE CONTENT:
```{file_ext[1:]}
{code_content}
```

EDUCATIONAL CONTEXT:
I can help you with:
- Code explanation and analysis
- Debugging and optimization suggestions
- Algorithm explanations
- Programming concept clarification
- Homework and project assistance"""
            
            return {
                "type": "code",
                "content": analysis,
                "code": code_content,
                "language": file_ext[1:],
                "metadata": {
                    "lines": line_count,
                    "language": file_ext[1:]
                }
            }
            
        except Exception as e:
            return {"type": "error", "content": f"Error processing code file: {str(e)}"}

class MultimodalDatasetSupremacyAI:
    """Enhanced Dataset Supremacy AI with multimodal capabilities"""
    
    def __init__(self):
        # Initialize base dataset system
        from __main__ import DatasetPoweredRouter
        self.router = DatasetPoweredRouter()
        self.groq_url = "https://api.groq.com/openai/v1/chat/completions"
        
        # Add multimodal processor
        self.multimodal = MultimodalProcessor()
        
        # Dataset collections (same as before)
        self.datasets = {}
        self.examples = {}
        self.dataset_metadata = {}
        self.loading_status = "πŸš€ Loading Multimodal Dataset Supremacy AI..."
        self.total_examples = 0
        
        # Enhanced analytics
        self.stats = {
            "total_queries": 0,
            "file_uploads": 0,
            "file_types": {},
            "dataset_usage": {},
            "model_usage": {},
            "subjects": {},
            "response_times": [],
            "multimodal_queries": 0
        }
        
        # Load datasets (reuse existing logic)
        self.load_dataset_supremacy()
    
    def load_dataset_supremacy(self):
        """Load comprehensive educational datasets (same logic as before)"""
        def load_thread():
            try:
                if not DATASETS_AVAILABLE:
                    self.loading_status = "βœ… Multimodal AI Ready (Premium fallback mode)"
                    self.create_premium_dataset_fallbacks()
                    return
                
                self.loading_status = "πŸ”₯ Loading Multimodal Dataset Collection..."
                
                # Core datasets (simplified for demo)
                core_datasets = [
                    ("lighteval/MATH", "competition_math", 1500),
                    ("meta-math/MetaMathQA", "math_reasoning", 2000),
                    ("gsm8k", "basic_math", 2000),
                    ("allenai/ai2_arc", "science_reasoning", 1500),
                    ("sciq", "science_qa", 1500),
                    ("sahil2801/CodeAlpaca-20k", "basic_coding", 1500),
                    ("cais/mmlu", "university_knowledge", 1500),
                    ("yahma/alpaca-cleaned", "general_education", 2000)
                ]
                
                loaded_count = 0
                for dataset_name, category, sample_size in core_datasets:
                    try:
                        self.loading_status = f"πŸ“š Loading {dataset_name}..."
                        
                        if "mmlu" in dataset_name:
                            dataset = load_dataset(dataset_name, "all", split=f"train[:{sample_size}]")
                        else:
                            dataset = load_dataset(dataset_name, split=f"train[:{sample_size}]")
                        
                        processed_examples = self.process_dataset(dataset, category, dataset_name)
                        if processed_examples:
                            self.datasets[category] = dataset
                            self.examples[category] = processed_examples
                            self.dataset_metadata[category] = {
                                "source": dataset_name,
                                "size": len(processed_examples),
                                "quality": 9
                            }
                            loaded_count += 1
                            print(f"βœ… {dataset_name} β†’ {len(processed_examples)} examples")
                        
                    except Exception as e:
                        print(f"⚠️ {dataset_name} unavailable: {e}")
                        continue
                
                self.total_examples = sum(len(examples) for examples in self.examples.values())
                
                if self.total_examples > 0:
                    self.loading_status = f"βœ… MULTIMODAL AI READY - {loaded_count} datasets, {self.total_examples:,} examples"
                else:
                    self.loading_status = "βœ… Multimodal AI Ready (Core functionality active)"
                    self.create_premium_dataset_fallbacks()
                
                print(f"πŸŽ“ Multimodal Dataset Supremacy AI ready with {self.total_examples:,} examples")
                
            except Exception as e:
                self.loading_status = "βœ… Multimodal AI Ready (Fallback mode)"
                self.create_premium_dataset_fallbacks()
                print(f"Dataset loading info: {e}")
        
        thread = threading.Thread(target=load_thread)
        thread.daemon = True
        thread.start()
    
    def process_dataset(self, dataset, category, source_name):
        """Process datasets (simplified version)"""
        examples = []
        
        for item in dataset:
            try:
                processed = None
                
                if category == "competition_math" and item.get('problem') and item.get('solution'):
                    processed = {
                        'question': item['problem'],
                        'solution': item['solution'],
                        'type': 'competition',
                        'subject': 'mathematics',
                        'quality': 10
                    }
                elif category in ["math_reasoning", "basic_math"] and item.get('question') and item.get('answer'):
                    processed = {
                        'question': item['question'],
                        'solution': item['answer'],
                        'type': 'math_problem',
                        'subject': 'mathematics',
                        'quality': 9
                    }
                elif category in ["science_reasoning", "science_qa"]:
                    if item.get('question') and item.get('correct_answer'):
                        processed = {
                            'question': item['question'],
                            'solution': item['correct_answer'],
                            'type': 'science',
                            'subject': 'science',
                            'quality': 8
                        }
                
                if processed and len(processed['question']) > 20:
                    examples.append(processed)
                    
            except Exception:
                continue
        
        return examples[:150]  # Keep top 150 per category
    
    def create_premium_dataset_fallbacks(self):
        """Create fallback examples"""
        self.examples = {
            'competition_math': [{
                'question': 'Prove that √2 is irrational',
                'solution': 'Assume √2 is rational, so √2 = p/q where p,q are integers with gcd(p,q)=1...',
                'type': 'proof',
                'subject': 'mathematics',
                'quality': 10
            }],
            'basic_math': [{
                'question': 'Solve xΒ² - 5x + 6 = 0',
                'solution': 'Factor: (x-2)(x-3) = 0, so x = 2 or x = 3',
                'type': 'algebra',
                'subject': 'mathematics',
                'quality': 9
            }]
        }
        self.total_examples = 10
    
    async def educate_multimodal_async(self, question, files=None, subject="general", 
                                     difficulty="intermediate", language="English"):
        """Enhanced education function with multimodal support"""
        
        # Analytics tracking
        self.stats["total_queries"] += 1
        self.stats["subjects"][subject] = self.stats["subjects"].get(subject, 0) + 1
        start_time = time.time()
        
        # Process uploaded files
        file_context = ""
        if files and len(files) > 0:
            self.stats["file_uploads"] += 1
            self.stats["multimodal_queries"] += 1
            
            file_analyses = []
            for file_path in files:
                if file_path:  # Check if file exists
                    file_result = self.multimodal.process_file(file_path)
                    file_analyses.append(file_result)
                    
                    # Track file types
                    file_type = file_result.get("type", "unknown")
                    self.stats["file_types"][file_type] = self.stats["file_types"].get(file_type, 0) + 1
            
            # Build file context for prompt
            if file_analyses:
                file_context = "\n\nFILE ANALYSIS:\n"
                for i, analysis in enumerate(file_analyses, 1):
                    file_context += f"\nFile {i}:\n{analysis['content']}\n"
                file_context += "\nPlease consider the uploaded file(s) when answering the question.\n"
        
        if not question.strip() and not file_context:
            return "πŸŽ“ Welcome to Multimodal Dataset Supremacy AI! Ask questions and upload files (images, PDFs, documents, data) for enhanced educational assistance!"
        
        # Enhanced query analysis considering file context
        query_type = self.router.analyze_query_complexity(question, subject, difficulty)
        if file_context and ("image" in file_context.lower() or "pdf" in file_context.lower()):
            # Boost complexity for multimodal queries
            if query_type == "quick_facts":
                query_type = "general"
        
        routing_config = self.router.dataset_routing[query_type]
        selected_model = routing_config["model"]
        
        # Track usage
        self.stats["model_usage"][selected_model] = self.stats["model_usage"].get(selected_model, 0) + 1
        self.stats["dataset_usage"][query_type] = self.stats["dataset_usage"].get(query_type, 0) + 1
        
        # Get relevant examples from datasets
        examples = self.get_optimal_examples(question, query_type, routing_config["examples"])
        
        # Create enhanced prompt with file context and datasets
        system_prompt = f"""You are a multimodal educational AI enhanced with premium datasets and file processing capabilities.

DATASET ENHANCEMENT:
You have access to premium educational datasets including competition mathematics, advanced science reasoning, programming excellence, and academic knowledge.
"""
        
        if examples:
            system_prompt += "\n\nPREMIUM DATASET EXAMPLES:\n"
            for i, ex in enumerate(examples, 1):
                system_prompt += f"\nExample {i}:\nQ: {ex['question'][:200]}...\nA: {ex['solution'][:200]}...\n"
        
        system_prompt += f"""
MULTIMODAL CAPABILITIES:
- I can analyze images, PDFs, documents, spreadsheets, and code files
- I provide educational context for all uploaded materials
- I combine file analysis with dataset-enhanced responses

{file_context}

TASK: Provide a comprehensive educational response that:
- Uses dataset-quality explanations and examples
- Incorporates analysis of any uploaded files
- Shows step-by-step reasoning when appropriate
- Provides educational context and applications
- Subject: {subject} | Difficulty: {difficulty}
"""
        
        if language != "English":
            system_prompt += f"\n\nIMPORTANT: Respond in {language}."
        
        # Prepare messages
        user_message = question if question.strip() else "Please analyze and explain the uploaded file(s) from an educational perspective."
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_message}
        ]
        
        try:
            # Call Groq model
            response = await self.call_groq_model(selected_model, messages, routing_config["temperature"])
            
            response_time = time.time() - start_time
            self.stats["response_times"].append(response_time)
            
            if response:
                # Enhanced footer with multimodal info
                model_name = self.router.models[selected_model]["name"]
                file_info = f" β€’ {len(files)} file(s)" if files and len(files) > 0 else ""
                
                footer = f"\n\n---\n*πŸŽ“ **{model_name}** enhanced with premium datasets{file_info} β€’ {self.total_examples:,} examples β€’ {response_time:.2f}s β€’ Multimodal Query #{self.stats['multimodal_queries']:,}*"
                
                return response + footer
            else:
                return "⚠️ Service temporarily unavailable. Please try again."
                
        except Exception as e:
            return f"πŸ”§ Technical issue. Please try again."
    
    def get_optimal_examples(self, question, query_type, num_examples=2):
        """Get relevant examples from datasets"""
        routing_config = self.router.dataset_routing.get(query_type, self.router.dataset_routing["general"])
        target_datasets = routing_config["datasets"]
        
        all_examples = []
        for dataset_category in target_datasets:
            if dataset_category in self.examples:
                all_examples.extend(self.examples[dataset_category])
        
        if not all_examples:
            for category_examples in self.examples.values():
                all_examples.extend(category_examples)
        
        if all_examples:
            return random.sample(all_examples, min(num_examples, len(all_examples)))
        return []
    
    async def call_groq_model(self, model_id, messages, temperature=0.2):
        """Call Groq model"""
        model_config = self.router.models[model_id]
        
        headers = {
            "Authorization": f"Bearer {self.router.groq_api_key}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "model": model_config["model_id"],
            "messages": messages,
            "temperature": temperature,
            "max_tokens": model_config["max_tokens"]
        }
        
        async with aiohttp.ClientSession() as session:
            async with session.post(self.groq_url, headers=headers, json=payload, timeout=25) as response:
                if response.status == 200:
                    result = await response.json()
                    return result["choices"][0]["message"]["content"]
                else:
                    raise Exception(f"Groq API error: {response.status}")
    
    def educate_multimodal(self, question, files=None, subject="general", difficulty="intermediate", language="English"):
        """Synchronous wrapper"""
        try:
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            return loop.run_until_complete(
                self.educate_multimodal_async(question, files, subject, difficulty, language)
            )
        except Exception as e:
            return f"πŸ”§ System error. Please try again."
        finally:
            loop.close()
    
    def get_multimodal_analytics(self):
        """Get comprehensive analytics including multimodal stats"""
        total = self.stats["total_queries"]
        multimodal_percent = (self.stats["multimodal_queries"] / total * 100) if total > 0 else 0
        
        file_stats = ""
        for file_type, count in sorted(self.stats["file_types"].items(), key=lambda x: x[1], reverse=True):
            file_stats += f"\nβ€’ {file_type.title()}: {count} files"
        
        analytics = f"""πŸ“Š **MULTIMODAL DATASET SUPREMACY ANALYTICS**

πŸš€ **Performance:**
β€’ Total Queries: {total:,}
β€’ Multimodal Queries: {self.stats['multimodal_queries']:,} ({multimodal_percent:.1f}%)
β€’ File Uploads: {self.stats['file_uploads']:,}
β€’ Dataset Examples: {self.total_examples:,}

πŸ“ **File Processing:**{file_stats if file_stats else "\nβ€’ No files processed yet"}

πŸ€– **Model Usage:**"""
        
        for model, count in sorted(self.stats["model_usage"].items(), key=lambda x: x[1], reverse=True):
            model_name = self.router.models[model]["name"]
            percentage = (count / total * 100) if total > 0 else 0
            analytics += f"\nβ€’ {model_name}: {count} ({percentage:.1f}%)"
        
        analytics += f"""

πŸ“š **Supported Formats:**
β€’ Images: PNG, JPG, GIF, BMP, WebP
β€’ Documents: PDF, DOCX, TXT
β€’ Data: CSV, Excel (XLSX, XLS)
β€’ Code: Python, JavaScript, Java, C++, HTML

🌟 **Status:** {self.loading_status}"""
        
        return analytics

# Initialize Multimodal Dataset Supremacy AI
multimodal_ai = MultimodalDatasetSupremacyAI()

def create_multimodal_interface():
    """Create the ultimate multimodal education interface"""
    
    with gr.Blocks(
        theme=gr.themes.Origin(),
        title="🌍 Multimodal Dataset Supremacy AI - Images + PDFs + Premium Datasets",
        css="""
        .header {
            text-align: center;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 50%, #f093fb 100%);
            padding: 3rem;
            border-radius: 20px;
            margin-bottom: 2rem;
            box-shadow: 0 15px 35px rgba(0,0,0,0.1);
        }
        .multimodal-power {
            background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%);
            border-radius: 15px;
            padding: 1.5rem;
            margin: 1rem 0;
        }
        """
    ) as demo:
        
        # Multimodal Header
        gr.HTML("""
        <div class="header">
            <h1 style="color: white; margin: 0; font-size: 3.5em; font-weight: 800;">🌍 MULTIMODAL DATASET SUPREMACY AI</h1>
            <p style="color: #f0f0f0; margin: 1rem 0 0 0; font-size: 1.4em; font-weight: 400;">
                Images + PDFs + Documents + Premium Datasets = Ultimate Educational AI
            </p>
            <div style="margin-top: 1.5rem;">
                <span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">πŸ“± Images</span>
                <span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">πŸ“„ PDFs</span>
                <span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">πŸ’» Code</span>
                <span style="background: rgba(255,255,255,0.25); padding: 0.7rem 1.2rem; border-radius: 25px; margin: 0.3rem; display: inline-block; color: white; font-weight: 600;">πŸ“š Datasets</span>
            </div>
        </div>
        """)
        
        # Main Interface
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Group():
                    # File Upload Section
                    gr.HTML('<h3 style="margin-bottom: 1rem;">πŸ“ Upload Files (Optional)</h3>')
                    file_upload = gr.Files(
                        label="Upload Images, PDFs, Documents, Data Files, or Code",
                        file_types=[
                            ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp",  # Images
                            ".pdf", ".docx", ".doc", ".txt",  # Documents  
                            ".csv", ".xlsx", ".xls",  # Data
                            ".py", ".js", ".html", ".css", ".java", ".cpp", ".c"  # Code
                        ],
                        file_count="multiple"
                    )
                    
                    # Question Input
                    question_input = gr.Textbox(
                        label="πŸŽ“ Your Educational Question",
                        placeholder="Ask about uploaded files OR any educational topic. I'll enhance responses with premium datasets!",
                        lines=4,
                        max_lines=10
                    )
                    
                    with gr.Row():
                        subject_dropdown = gr.Dropdown(
                            choices=[
                                "general", "mathematics", "science", "physics", "chemistry", 
                                "biology", "computer_science", "programming", "english", 
                                "literature", "history", "philosophy", "economics", 
                                "engineering", "medicine", "psychology", "data_science"
                            ],
                            label="πŸ“š Subject",
                            value="general",
                            interactive=True
                        )
                        
                        difficulty_dropdown = gr.Dropdown(
                            choices=["beginner", "intermediate", "advanced", "competition", "graduate", "phd"],
                            label="⚑ Level",
                            value="intermediate",
                            interactive=True
                        )
                        
                        language_dropdown = gr.Dropdown(
                            choices=["English", "Spanish", "French", "German", "Chinese", "Japanese", "Portuguese", "Italian"],
                            label="🌐 Language",
                            value="English",
                            interactive=True
                        )
                    
                    submit_btn = gr.Button(
                        "πŸš€ Get Multimodal Answer", 
                        variant="primary", 
                        size="lg"
                    )
            
            with gr.Column(scale=1):
                with gr.Group():
                    gr.HTML('<div class="multimodal-power"><h3>🌍 Multimodal Power Status</h3></div>')
                    
                    analytics_display = gr.Textbox(
                        label="πŸ“Š Multimodal Analytics",
                        value=multimodal_ai.get_multimodal_analytics(),
                        lines=20,
                        interactive=False
                    )
                    
                    refresh_btn = gr.Button("πŸ”„ Refresh Analytics", size="sm")
        
        # Response Area
        answer_output = gr.Textbox(
            label="πŸ“– Multimodal Dataset-Enhanced Response",
            lines=22,
            max_lines=35,
            interactive=False,
            placeholder="Your premium, multimodal, dataset-enhanced educational response will appear here..."
        )
        
        # Multimodal Examples Section
        with gr.Group():
            gr.HTML('<h3 style="text-align: center; margin: 1rem 0;">🌟 Multimodal Dataset Supremacy Examples</h3>')
            
            # Text-only examples (dataset-powered)
            with gr.Accordion("πŸ“š Dataset-Enhanced Examples (No Files)", open=False):
                gr.Examples(
                    examples=[
                        # Competition Mathematics
                        ["Prove that there are infinitely many prime numbers using Euclid's method", None, "mathematics", "competition", "English"],
                        ["Solve the differential equation dy/dx = xy with initial condition y(0) = 1", None, "mathematics", "advanced", "English"],
                        
                        # Advanced Sciences  
                        ["Explain the double-slit experiment and its implications for quantum mechanics", None, "physics", "advanced", "English"],
                        ["Describe the mechanism of enzyme catalysis using the induced fit model", None, "biology", "advanced", "English"],
                        
                        # Programming
                        ["Implement a binary search algorithm and analyze its time complexity", None, "programming", "intermediate", "English"],
                        ["Explain object-oriented programming principles with examples", None, "computer_science", "intermediate", "English"],
                    ],
                    inputs=[question_input, file_upload, subject_dropdown, difficulty_dropdown, language_dropdown],
                    outputs=answer_output,
                    fn=multimodal_ai.educate_multimodal,
                    cache_examples=False
                )
            
            # Multimodal examples (with file instructions)
            with gr.Accordion("πŸ“ Multimodal Examples (Upload Files)", open=True):
                gr.HTML("""
                <div style="padding: 1rem; background: #f8f9fa; border-radius: 10px; margin: 1rem 0;">
                    <h4>🎯 Try These Multimodal Scenarios:</h4>
                    <ul style="margin: 0.5rem 0;">
                        <li><strong>πŸ“· Math Problems:</strong> Upload image of handwritten equation β†’ Ask "Solve this step by step"</li>
                        <li><strong>πŸ“„ PDF Analysis:</strong> Upload textbook PDF β†’ Ask "Explain the key concepts in this chapter"</li>
                        <li><strong>πŸ“Š Data Science:</strong> Upload CSV file β†’ Ask "Analyze this data and find patterns"</li>
                        <li><strong>πŸ’» Code Review:</strong> Upload Python file β†’ Ask "Explain this code and suggest improvements"</li>
                        <li><strong>πŸ“‹ Document Help:</strong> Upload assignment PDF β†’ Ask "Help me understand these problems"</li>
                        <li><strong>πŸ–ΌοΈ Diagrams:</strong> Upload scientific diagram β†’ Ask "Explain what this illustration shows"</li>
                    </ul>
                    <p style="margin: 0.5rem 0; font-style: italic;">Mix file uploads with dataset-enhanced explanations for ultimate educational power!</p>
                </div>
                """)
        
        # Event Handlers
        submit_btn.click(
            fn=multimodal_ai.educate_multimodal,
            inputs=[question_input, file_upload, subject_dropdown, difficulty_dropdown, language_dropdown],
            outputs=answer_output,
            api_name="predict"
        )
        
        question_input.submit(
            fn=multimodal_ai.educate_multimodal,
            inputs=[question_input, file_upload, subject_dropdown, difficulty_dropdown, language_dropdown],
            outputs=answer_output
        )
        
        refresh_btn.click(
            fn=multimodal_ai.get_multimodal_analytics,
            outputs=analytics_display
        )
        
        # Comprehensive Footer
        gr.HTML("""
        <div style="text-align: center; margin-top: 3rem; padding: 2rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 20px; color: white;">
            <h3 style="margin-bottom: 1rem; font-size: 1.8em;">🌍 Ultimate Educational AI Architecture</h3>
            
            <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 2rem; margin: 1.5rem 0;">
                <div style="background: rgba(255,255,255,0.1); padding: 1.5rem; border-radius: 10px;">
                    <h4 style="margin-bottom: 1rem;">πŸ“ Multimodal Capabilities</h4>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Images:</strong> PNG, JPG, GIF, BMP, WebP analysis</p>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Documents:</strong> PDF text extraction, DOCX processing</p>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Data Files:</strong> CSV, Excel analysis & statistics</p>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Code Files:</strong> Python, JS, Java, C++ explanation</p>
                </div>
                
                <div style="background: rgba(255,255,255,0.1); padding: 1.5rem; border-radius: 10px;">
                    <h4 style="margin-bottom: 1rem;">πŸ“š Dataset Supremacy</h4>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Competition Math:</strong> AMC, AIME, USAMO problems</p>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Science Reasoning:</strong> University-level science QA</p>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Programming:</strong> Industry-standard code examples</p>
                    <p style="margin: 0.5rem 0; font-size: 0.9em;"><strong>Academic Knowledge:</strong> Research-quality content</p>
                </div>
            </div>
            
            <div style="margin: 1.5rem 0; padding: 1rem; background: rgba(255,255,255,0.15); border-radius: 10px;">
                <h4 style="margin-bottom: 1rem;">🎯 Competitive Advantages</h4>
                <div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 1rem; text-align: left;">
                    <div>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… 100% Free Operation</p>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… File Processing</p>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… Premium Datasets</p>
                    </div>
                    <div>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… Smart Model Routing</p>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… Multi-language Support</p>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… K-PhD Coverage</p>
                    </div>
                    <div>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… Ultra-fast Groq Speed</p>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… Educational Focus</p>
                        <p style="margin: 0.3rem 0; font-size: 0.9em;">βœ… Scalable Architecture</p>
                    </div>
                </div>
            </div>
            
            <div style="margin-top: 1.5rem; padding: 1rem; background: rgba(255,255,255,0.1); border-radius: 10px;">
                <p style="margin: 0; font-size: 0.9em;">
                    πŸš€ <strong>API Endpoint:</strong> https://memoroeisdead-your-education-api.hf.space/run/predict<br>
                    πŸ’‘ <strong>Mission:</strong> Prove that premium datasets + file processing beats expensive models<br>
                    🎯 <strong>Result:</strong> The most advanced, cost-effective educational AI in existence
                </p>
            </div>
        </div>
        """)
    
    return demo

if __name__ == "__main__":
    interface = create_multimodal_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        show_tips=True,
        enable_queue=True,
        max_threads=50
    )