Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import BlipProcessor, BlipForQuestionAnswering, MarianMTModel, MarianTokenizer | |
from PIL import Image, ImageDraw, ImageFont | |
import torch, uuid, os | |
from datetime import datetime | |
# تحميل نموذج BLIP المدرب مسبقًا | |
blip_model = BlipForQuestionAnswering.from_pretrained("mshsahmed/blip-vqa-finetuned-kvasir-v58849") | |
processor = BlipProcessor.from_pretrained("mshsahmed/blip-vqa-finetuned-kvasir-v58849") | |
# تحميل نماذج الترجمة | |
ar_en_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
ar_en_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
en_ar_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
en_ar_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
# دوال الترجمة | |
def translate_ar_to_en(text): | |
inputs = ar_en_tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
outputs = ar_en_model.generate(**inputs) | |
return ar_en_tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
def translate_en_to_ar(text): | |
inputs = en_ar_tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
outputs = en_ar_model.generate(**inputs) | |
return en_ar_tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
# قاموس ترجمة طبي يدوي | |
medical_terms = { | |
"colonoscopy": "تنظير القولون ", | |
"Ulcerative Colitis": "التهاب القولون التقرحي", | |
"Have all polyps been removed?": "هل تم إزالة جميع الاورام الحميدة", | |
"polyps": " الاورام الحميدة", | |
"What type of polyp is present?": " ما هو نوع الورم الموجود", | |
"gastroscopy": "تنظير المعدة ", | |
"polyp": "ورم " | |
} | |
# دالة الترجمة الذكية للإجابات | |
def translate_answer_medical(answer_en): | |
key = answer_en.lower().strip() | |
if key in medical_terms: | |
return medical_terms[key] | |
else: | |
return translate_en_to_ar(answer_en) | |
# ✅ Arabic font helper | |
def get_font(size=22): | |
try: | |
return ImageFont.truetype("Amiri-Regular.ttf", size) | |
except: | |
return ImageFont.load_default() | |
# ✅ Report generation function | |
def generate_report_image(image, question_ar, question_en, answer_ar, answer_en): | |
width, height = 1000, 700 | |
background = Image.new("RGB", (width, height), color="white") | |
draw = ImageDraw.Draw(background) | |
font = get_font(22) | |
font_bold = get_font(26) | |
draw.text((40, 20), " Medical VQA Report", font=font_bold, fill="black") | |
draw.text((40, 60), f"Date:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", font=font, fill="gray") | |
# Header background | |
img_resized = image.resize((300, 300)) | |
background.paste(img_resized, (50, 110)) | |
x, y = 380, 110 | |
spacing = 70 | |
lines = [ | |
f"السؤال بالعربية :{question_ar}", | |
f"الإجابة بالعربية :{answer_ar}", | |
f"Question in English:{question_en}", | |
f"Answer in English:{answer_en}", | |
f" © 2025 NTI - Artificial Intelligence in Medical Project" | |
] | |
for line in lines: | |
for subline in line.split("\n"): | |
draw.text((x, y), subline, font=font, fill="black") | |
y += spacing | |
file_name = f"report_{uuid.uuid4().hex[:8]}.png" | |
background.save(file_name) | |
return file_name | |
# ✅ Main VQA function | |
def vqa_multilingual(image, question): | |
if not image or not question.strip(): | |
return "يرجى رفع صورة وكتابة سؤال.", "", "", "", None | |
is_arabic = any('\u0600' <= c <= '\u06FF' for c in question) | |
question_ar = question.strip() if is_arabic else translate_en_to_ar(question) | |
question_en = translate_ar_to_en(question) if is_arabic else question.strip() | |
inputs = processor(image, question_en, return_tensors="pt") | |
with torch.no_grad(): | |
output = blip_model.generate(**inputs) | |
answer_en = processor.decode(output[0], skip_special_tokens=True).strip() | |
answer_ar = translate_answer_medical(answer_en) | |
report_image_path = generate_report_image(image, question_ar, question_en, answer_ar, answer_en) | |
return ( | |
question_ar, | |
question_en, | |
answer_ar, | |
answer_en, | |
report_image_path | |
) | |
# واجهة Gradio | |
gr.Interface( | |
fn=vqa_multilingual, | |
inputs=[ | |
gr.Image(type="pil", label="🔍 ارفع صورة الأشعة"), | |
gr.Textbox(label="💬 أدخل سؤالك (بالعربية أو الإنجليزية)") | |
], | |
outputs=[ | |
gr.Textbox(label="🟠 السؤال بالعربية"), | |
gr.Textbox(label="🟢 السؤال بالإنجليزية"), | |
gr.Textbox(label="🟠 الإجابة بالعربية"), | |
gr.Textbox(label="🟢 الإجابة بالإنجليزية"), | |
gr.Image(type="filepath", label="📸 Report") | |
], | |
title=" نموذج ثنائي اللغة (عربي - إنجليزي) خاص بمنظار المعدة ", | |
description="ارفع صورة طبية واسأل بالعربية أو الإنجليزية، وستحصل على الإجابة باللغتين." | |
).launch(share=True) |