|
import random |
|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
import re |
|
from diffusers import DiffusionPipeline |
|
from PIL import Image, PngImagePlugin |
|
import json |
|
import io |
|
|
|
|
|
def add_metadata_to_image(image, metadata): |
|
metadata_str = json.dumps(metadata) |
|
|
|
|
|
img_with_metadata = image.copy() |
|
|
|
|
|
png_info = PngImagePlugin.PngInfo() |
|
png_info.add_text("parameters", metadata_str) |
|
|
|
|
|
buffer = io.BytesIO() |
|
img_with_metadata.save(buffer, format="PNG", pnginfo=png_info) |
|
|
|
|
|
buffer.seek(0) |
|
return Image.open(buffer) |
|
|
|
def add_comma_after_pattern_ti(text): |
|
pattern = re.compile(r'\b\w+_\d+\b') |
|
modified_text = pattern.sub(lambda x: x.group() + ',', text) |
|
return modified_text |
|
|
|
def process_prompt(prompt): |
|
"""简单的提示词处理函数""" |
|
return add_comma_after_pattern_ti(prompt) |
|
|
|
DESCRIPTION = "梦羽的模型生成器 - 快速生成 Qwen-image 模型的图片" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>你现在运行在CPU上 但是此项目只支持GPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
if torch.cuda.is_available(): |
|
dtype = torch.bfloat16 |
|
device = "cuda" |
|
|
|
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device) |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU |
|
def infer( |
|
prompt: str, |
|
negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
use_negative_prompt: bool = True, |
|
seed: int = 7, |
|
width: int = 1024, |
|
height: int = 1536, |
|
guidance_scale: float = 4.0, |
|
num_inference_steps: int = 50, |
|
randomize_seed: bool = True, |
|
): |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = "" |
|
|
|
original_prompt = prompt |
|
|
|
|
|
prompt = process_prompt(prompt) |
|
|
|
|
|
positive_magic_en = "Ultra HD, 4K, cinematic composition." |
|
positive_magic_zh = "超清,4K,电影级构图" |
|
|
|
|
|
if any('\u4e00' <= char <= '\u9fff' for char in prompt): |
|
prompt = prompt + " " + positive_magic_zh |
|
else: |
|
prompt = prompt + " " + positive_magic_en |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
true_cfg_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
).images[0] |
|
|
|
|
|
metadata = { |
|
"prompt": original_prompt, |
|
"processed_prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"seed": seed, |
|
"width": width, |
|
"height": height, |
|
"true_cfg_scale": guidance_scale, |
|
"num_inference_steps": num_inference_steps, |
|
"model": "qwen-image", |
|
"PreUrl": "https://huggingface.co/spaces/Menyu/QwenImage" |
|
} |
|
|
|
image_with_metadata = add_metadata_to_image(image, metadata) |
|
|
|
return image_with_metadata, seed |
|
|
|
examples = [ |
|
"nahida (genshin impact)", |
|
"klee (genshin impact)", |
|
] |
|
|
|
css = ''' |
|
.gradio-container { |
|
max-width: 560px !important; |
|
margin-left: auto !important; |
|
margin-right: auto !important; |
|
} |
|
h1{text-align:center} |
|
''' |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("""# 梦羽的模型生成器 |
|
### 快速生成 qwen-image 模型的图片""") |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="关键词", |
|
show_label=True, |
|
max_lines=5, |
|
placeholder="输入你要的图片关键词", |
|
container=False, |
|
) |
|
run_button = gr.Button("生成", scale=0, variant="primary") |
|
result = gr.Image(label="Result", show_label=False, format="png") |
|
with gr.Accordion("高级选项", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True) |
|
negative_prompt = gr.Text( |
|
label="反向词条", |
|
max_lines=5, |
|
lines=4, |
|
placeholder="输入你要排除的图片关键词", |
|
value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="种子", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="随机种子", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="宽度", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=832, |
|
) |
|
height = gr.Slider( |
|
label="高度", |
|
minimum=512, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1216, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="True CFG Scale", |
|
minimum=1.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=4.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="生成步数", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=infer |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
) |
|
|
|
gr.on( |
|
triggers=[prompt.submit, run_button.click], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
randomize_seed, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |