Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,120 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import yaml
|
| 3 |
+
import json
|
| 4 |
+
import uuid
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from docx import Document
|
| 7 |
+
import PyPDF2
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
+
import tiktoken
|
| 10 |
+
import os
|
| 11 |
|
| 12 |
+
# Carga modelo de embeddings de HF
|
| 13 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 14 |
+
# Tokenizer para chunking
|
| 15 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
| 16 |
|
| 17 |
+
# Extrae front-matter YAML (si existe) y cuerpo
|
| 18 |
+
def extract_front_matter_and_body(text: str):
|
| 19 |
+
import re
|
| 20 |
+
fm_regex = r"^---\n(.*?)\n---\n(.*)$"
|
| 21 |
+
m = re.match(fm_regex, text, re.DOTALL)
|
| 22 |
+
if m:
|
| 23 |
+
meta = yaml.safe_load(m.group(1)) or {}
|
| 24 |
+
body = m.group(2)
|
| 25 |
+
else:
|
| 26 |
+
meta = {}
|
| 27 |
+
body = text
|
| 28 |
+
return meta, body
|
| 29 |
+
|
| 30 |
+
# Chunking en base a tokens
|
| 31 |
+
def chunk_text(text: str, max_tokens: int = 500, overlap: int = 50):
|
| 32 |
+
tokens = tokenizer.encode(text)
|
| 33 |
+
chunks = []
|
| 34 |
+
start = 0
|
| 35 |
+
while start < len(tokens):
|
| 36 |
+
end = min(start + max_tokens, len(tokens))
|
| 37 |
+
chunk_toks = tokens[start:end]
|
| 38 |
+
chunks.append(tokenizer.decode(chunk_toks))
|
| 39 |
+
start += max_tokens - overlap
|
| 40 |
+
return chunks
|
| 41 |
+
|
| 42 |
+
# Procesa un archivo individual (md/docx/pdf)
|
| 43 |
+
def process_file(path: str, vertical: str, language: str):
|
| 44 |
+
ext = Path(path).suffix.lower()
|
| 45 |
+
# Leer y extraer texto
|
| 46 |
+
if ext in ['.md', '.markdown']:
|
| 47 |
+
raw = Path(path).read_text(encoding='utf-8')
|
| 48 |
+
meta, body = extract_front_matter_and_body(raw)
|
| 49 |
+
elif ext == '.docx':
|
| 50 |
+
doc = Document(path)
|
| 51 |
+
body = "\n".join(p.text for p in doc.paragraphs)
|
| 52 |
+
meta = {}
|
| 53 |
+
elif ext == '.pdf':
|
| 54 |
+
reader = PyPDF2.PdfReader(path)
|
| 55 |
+
pages = [page.extract_text() or "" for page in reader.pages]
|
| 56 |
+
body = "\n".join(pages)
|
| 57 |
+
meta = {}
|
| 58 |
+
else:
|
| 59 |
+
return []
|
| 60 |
+
|
| 61 |
+
# Metadatos por defecto + front-matter
|
| 62 |
+
default_meta = {
|
| 63 |
+
'vertical': vertical,
|
| 64 |
+
'language': language,
|
| 65 |
+
'source': Path(path).name
|
| 66 |
+
}
|
| 67 |
+
meta = {**default_meta, **meta}
|
| 68 |
+
|
| 69 |
+
# Chunking y embeddings
|
| 70 |
+
records = []
|
| 71 |
+
for i, chunk in enumerate(chunk_text(body)):
|
| 72 |
+
emb = model.encode(chunk).tolist()
|
| 73 |
+
metadata = {
|
| 74 |
+
'id': f"{Path(path).stem}-chunk-{i+1:04d}",
|
| 75 |
+
'chunk_index': i+1,
|
| 76 |
+
**meta
|
| 77 |
+
}
|
| 78 |
+
records.append({ 'vector': emb, 'metadata': metadata })
|
| 79 |
+
return records
|
| 80 |
+
|
| 81 |
+
# Funci贸n para el bot贸n
|
| 82 |
+
def run_pipeline(files, vertical, language):
|
| 83 |
+
all_records = []
|
| 84 |
+
# Guardar temporalmente y procesar
|
| 85 |
+
for file in files:
|
| 86 |
+
# Gradio pasa un dict con 'name' y 'data'
|
| 87 |
+
tmp_path = file.name
|
| 88 |
+
os.replace(file.name, tmp_path)
|
| 89 |
+
recs = process_file(tmp_path, vertical, language)
|
| 90 |
+
all_records.extend(recs)
|
| 91 |
+
|
| 92 |
+
# Generar JSONL
|
| 93 |
+
out_file = f"/tmp/{uuid.uuid4().hex}.jsonl"
|
| 94 |
+
with open(out_file, 'w', encoding='utf-8') as f:
|
| 95 |
+
for rec in all_records:
|
| 96 |
+
json.dump({ 'id': rec['metadata']['id'],
|
| 97 |
+
'vector': rec['vector'],
|
| 98 |
+
'metadata': rec['metadata']
|
| 99 |
+
}, f, ensure_ascii=False)
|
| 100 |
+
f.write("\n")
|
| 101 |
+
|
| 102 |
+
return out_file
|
| 103 |
+
|
| 104 |
+
# Interfaz Gradio
|
| 105 |
+
demo = gr.Blocks()
|
| 106 |
+
with demo:
|
| 107 |
+
gr.Markdown("## Ingesta para Amazon S3 Vector Features")
|
| 108 |
+
with gr.Row():
|
| 109 |
+
uploader = gr.File(label="Sube tus documentos", file_count="multiple", type="file")
|
| 110 |
+
vertical = gr.Textbox(label="Vertical (p.ej. SEO, eCommerce)", value="general")
|
| 111 |
+
language = gr.Textbox(label="Idioma", value="es")
|
| 112 |
+
btn = gr.Button("Procesar y Generar JSONL")
|
| 113 |
+
output = gr.File(label="Descarga el JSONL")
|
| 114 |
+
|
| 115 |
+
btn.click(fn=run_pipeline,
|
| 116 |
+
inputs=[uploader, vertical, language],
|
| 117 |
+
outputs=output)
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
demo.launch()
|