Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,10 @@ from docx import Document
|
|
7 |
import PyPDF2
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
import tiktoken
|
10 |
-
import os
|
11 |
|
12 |
-
# Carga modelo de embeddings de HF
|
13 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
14 |
-
# Tokenizer para chunking
|
15 |
tokenizer = tiktoken.get_encoding("cl100k_base")
|
16 |
|
17 |
-
# Extrae front-matter YAML (si existe) y cuerpo
|
18 |
def extract_front_matter_and_body(text: str):
|
19 |
import re
|
20 |
fm_regex = r"^---\n(.*?)\n---\n(.*)$"
|
@@ -27,7 +23,6 @@ def extract_front_matter_and_body(text: str):
|
|
27 |
body = text
|
28 |
return meta, body
|
29 |
|
30 |
-
# Chunking en base a tokens
|
31 |
def chunk_text(text: str, max_tokens: int = 500, overlap: int = 50):
|
32 |
tokens = tokenizer.encode(text)
|
33 |
chunks = []
|
@@ -39,10 +34,8 @@ def chunk_text(text: str, max_tokens: int = 500, overlap: int = 50):
|
|
39 |
start += max_tokens - overlap
|
40 |
return chunks
|
41 |
|
42 |
-
# Procesa un archivo individual (md/docx/pdf)
|
43 |
def process_file(path: str, vertical: str, language: str):
|
44 |
ext = Path(path).suffix.lower()
|
45 |
-
# Leer y extraer texto
|
46 |
if ext in ['.md', '.markdown']:
|
47 |
raw = Path(path).read_text(encoding='utf-8')
|
48 |
meta, body = extract_front_matter_and_body(raw)
|
@@ -58,15 +51,12 @@ def process_file(path: str, vertical: str, language: str):
|
|
58 |
else:
|
59 |
return []
|
60 |
|
61 |
-
# Metadatos por defecto + front-matter
|
62 |
default_meta = {
|
63 |
'vertical': vertical,
|
64 |
'language': language,
|
65 |
'source': Path(path).name
|
66 |
}
|
67 |
meta = {**default_meta, **meta}
|
68 |
-
|
69 |
-
# Chunking y embeddings
|
70 |
records = []
|
71 |
for i, chunk in enumerate(chunk_text(body)):
|
72 |
emb = model.encode(chunk).tolist()
|
@@ -75,46 +65,33 @@ def process_file(path: str, vertical: str, language: str):
|
|
75 |
'chunk_index': i+1,
|
76 |
**meta
|
77 |
}
|
78 |
-
records.append({
|
79 |
return records
|
80 |
|
81 |
-
# Funci贸n para el bot贸n
|
82 |
def run_pipeline(files, vertical, language):
|
83 |
all_records = []
|
84 |
-
|
85 |
-
|
86 |
-
# Gradio pasa un dict con 'name' y 'data'
|
87 |
-
tmp_path = file.name
|
88 |
-
os.replace(file.name, tmp_path)
|
89 |
-
recs = process_file(tmp_path, vertical, language)
|
90 |
all_records.extend(recs)
|
91 |
|
92 |
-
# Generar JSONL
|
93 |
out_file = f"/tmp/{uuid.uuid4().hex}.jsonl"
|
94 |
with open(out_file, 'w', encoding='utf-8') as f:
|
95 |
for rec in all_records:
|
96 |
-
json.dump({
|
97 |
-
'vector': rec['vector'],
|
98 |
-
'metadata': rec['metadata']
|
99 |
-
}, f, ensure_ascii=False)
|
100 |
f.write("\n")
|
101 |
-
|
102 |
return out_file
|
103 |
|
104 |
-
# Interfaz Gradio
|
105 |
demo = gr.Blocks()
|
106 |
with demo:
|
107 |
gr.Markdown("## Ingesta para Amazon S3 Vector Features")
|
108 |
with gr.Row():
|
109 |
-
uploader = gr.File(label="Sube tus documentos", file_count="multiple", type="
|
110 |
vertical = gr.Textbox(label="Vertical (p.ej. SEO, eCommerce)", value="general")
|
111 |
language = gr.Textbox(label="Idioma", value="es")
|
112 |
btn = gr.Button("Procesar y Generar JSONL")
|
113 |
output = gr.File(label="Descarga el JSONL")
|
114 |
|
115 |
-
btn.click(fn=run_pipeline,
|
116 |
-
inputs=[uploader, vertical, language],
|
117 |
-
outputs=output)
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
demo.launch()
|
|
|
7 |
import PyPDF2
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
import tiktoken
|
|
|
10 |
|
|
|
11 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
12 |
tokenizer = tiktoken.get_encoding("cl100k_base")
|
13 |
|
|
|
14 |
def extract_front_matter_and_body(text: str):
|
15 |
import re
|
16 |
fm_regex = r"^---\n(.*?)\n---\n(.*)$"
|
|
|
23 |
body = text
|
24 |
return meta, body
|
25 |
|
|
|
26 |
def chunk_text(text: str, max_tokens: int = 500, overlap: int = 50):
|
27 |
tokens = tokenizer.encode(text)
|
28 |
chunks = []
|
|
|
34 |
start += max_tokens - overlap
|
35 |
return chunks
|
36 |
|
|
|
37 |
def process_file(path: str, vertical: str, language: str):
|
38 |
ext = Path(path).suffix.lower()
|
|
|
39 |
if ext in ['.md', '.markdown']:
|
40 |
raw = Path(path).read_text(encoding='utf-8')
|
41 |
meta, body = extract_front_matter_and_body(raw)
|
|
|
51 |
else:
|
52 |
return []
|
53 |
|
|
|
54 |
default_meta = {
|
55 |
'vertical': vertical,
|
56 |
'language': language,
|
57 |
'source': Path(path).name
|
58 |
}
|
59 |
meta = {**default_meta, **meta}
|
|
|
|
|
60 |
records = []
|
61 |
for i, chunk in enumerate(chunk_text(body)):
|
62 |
emb = model.encode(chunk).tolist()
|
|
|
65 |
'chunk_index': i+1,
|
66 |
**meta
|
67 |
}
|
68 |
+
records.append({'vector': emb, 'metadata': metadata})
|
69 |
return records
|
70 |
|
|
|
71 |
def run_pipeline(files, vertical, language):
|
72 |
all_records = []
|
73 |
+
for file_path in files:
|
74 |
+
recs = process_file(file_path, vertical, language)
|
|
|
|
|
|
|
|
|
75 |
all_records.extend(recs)
|
76 |
|
|
|
77 |
out_file = f"/tmp/{uuid.uuid4().hex}.jsonl"
|
78 |
with open(out_file, 'w', encoding='utf-8') as f:
|
79 |
for rec in all_records:
|
80 |
+
json.dump({'id': rec['metadata']['id'], 'vector': rec['vector'], 'metadata': rec['metadata']}, f, ensure_ascii=False)
|
|
|
|
|
|
|
81 |
f.write("\n")
|
|
|
82 |
return out_file
|
83 |
|
|
|
84 |
demo = gr.Blocks()
|
85 |
with demo:
|
86 |
gr.Markdown("## Ingesta para Amazon S3 Vector Features")
|
87 |
with gr.Row():
|
88 |
+
uploader = gr.File(label="Sube tus documentos", file_count="multiple", type="filepath")
|
89 |
vertical = gr.Textbox(label="Vertical (p.ej. SEO, eCommerce)", value="general")
|
90 |
language = gr.Textbox(label="Idioma", value="es")
|
91 |
btn = gr.Button("Procesar y Generar JSONL")
|
92 |
output = gr.File(label="Descarga el JSONL")
|
93 |
|
94 |
+
btn.click(fn=run_pipeline, inputs=[uploader, vertical, language], outputs=output)
|
|
|
|
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|