File size: 1,741 Bytes
a8bb7b0
 
 
f85145e
a8bb7b0
 
 
 
8e89b38
a8bb7b0
 
 
8e89b38
a8bb7b0
 
5bd9cf6
a8bb7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85145e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import spacy
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

nlp = spacy.load('es_core_news_sm')

models = {
    "https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor": AutoModelForCausalLM.from_pretrained("https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor"),
}

tokenizers = {
    "https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor": AutoTokenizer.from_pretrained("https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor"),
}


def generate(model_name: str):
    model = models[model_name]
    tokenizer = tokenizers[model_name]

    # Encode input for the model
    input_ids = tokenizer.encode('El', return_tensors='pt')

    # Generate text
    output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=1.0)
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return generated_text

def process(sentence: str):
    doc = nlp(sentence)
    tagged_words = [(token.text, token.pos_) for token in doc]

    return tagged_words

inputs_generate = gr.inputs.Dropdown(choices=list(models.keys()), label="Model")
outputs_generate = gr.outputs.Textbox(label="Generated Sentence")

inputs_process = gr.inputs.Textbox(label="Sentence")
outputs_process = gr.outputs.Textbox(label="Processed Sentence")

generate_interface = gr.Interface(fn=generate, inputs=inputs_generate, outputs=outputs_generate)
process_interface = gr.Interface(fn=process, inputs=inputs_process, outputs=outputs_process)

interface = gr.Interface(
    fn=generate,
    inputs=gr.inputs.Dropdown(choices=list(models.keys()), label="Model"),
    outputs=gr.outputs.Textbox(label="Generated Sentence")
)

interface.launch(share=True)