GramAPP / app.py
Merlintxu's picture
Create app.py
a8bb7b0
raw
history blame
2.2 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import spacy
import torch
import gradio as gr
nlp = spacy.load('es_core_news_sm')
models = {
"stabilityai/stablelm-tuned-alpha-7b": AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b"),
"CRD716/ggml-LLaMa-65B-quantized": AutoModelForCausalLM.from_pretrained("CRD716/ggml-LLaMa-65B-quantized"),
"RedXeol/bertin-gpt-j-6B-alpaca-4bit-128g": AutoModelForCausalLM.from_pretrained("RedXeol/bertin-gpt-j-6B-alpaca-4bit-128g"),
"bertin-project/bertin-alpaca-lora-7b": AutoModelForCausalLM.from_pretrained("bertin-project/bertin-alpaca-lora-7b")
}
tokenizers = {
"stabilityai/stablelm-tuned-alpha-7b": AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b"),
"CRD716/ggml-LLaMa-65B-quantized": AutoTokenizer.from_pretrained("CRD716/ggml-LLaMa-65B-quantized"),
"RedXeol/bertin-gpt-j-6B-alpaca-4bit-128g": AutoTokenizer.from_pretrained("RedXeol/bertin-gpt-j-6B-alpaca-4bit-128g"),
"bertin-project/bertin-alpaca-lora-7b": AutoTokenizer.from_pretrained("bertin-project/bertin-alpaca-lora-7b")
}
def generate(model_name: str):
model = models[model_name]
tokenizer = tokenizers[model_name]
# Encode input for the model
input_ids = tokenizer.encode('El', return_tensors='pt')
# Generate text
output = model.generate(input_ids, max_length=50, num_return_sequences=1, temperature=1.0)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
def process(sentence: str):
doc = nlp(sentence)
tagged_words = [(token.text, token.pos_) for token in doc]
return tagged_words
inputs_generate = gr.inputs.Dropdown(choices=list(models.keys()), label="Model")
outputs_generate = gr.outputs.Textbox(label="Generated Sentence")
inputs_process = gr.inputs.Textbox(label="Sentence")
outputs_process = gr.outputs.Textbox(label="Processed Sentence")
generate_interface = gr.Interface(fn=generate, inputs=inputs_generate, outputs=outputs_generate)
process_interface = gr.Interface(fn=process, inputs=inputs_process, outputs=outputs_process)
generate_interface.launch(share=True)
process_interface.launch(share=True)