|
import gradio as gr |
|
import spacy |
|
from transformers import pipeline |
|
|
|
nlp = spacy.load('es_core_news_sm') |
|
text_generator = pipeline('text-generation', model='gpt2') |
|
|
|
pos_tags = ['ADJ', 'ADP', 'ADV', 'AUX', 'CONJ', 'DET', 'INTJ', 'NOUN', 'NUM', 'PART', 'PRON', 'PROPN', 'PUNCT', 'SCONJ', 'SYM', 'VERB', 'X'] |
|
|
|
def generate_sentence(): |
|
result = text_generator('')[0] |
|
sentence = result['generated_text'] |
|
return sentence |
|
|
|
def analyze_sentence(sentence): |
|
doc = nlp(sentence) |
|
tagged_words = [(token.text, token.pos_) for token in doc] |
|
return tagged_words |
|
|
|
def check_answer(sentence, answer): |
|
tagged_words = analyze_sentence(sentence) |
|
correct_answer = [tag for word, tag in tagged_words] |
|
if answer == correct_answer: |
|
return 'Correcto!' |
|
else: |
|
return 'Incorrecto. La respuesta correcta es: ' + str(correct_answer) |
|
|
|
def process_form(input_dict): |
|
answer = [input_dict[word] for word in sorted(input_dict.keys())] |
|
return check_answer(sentence, answer) |
|
|
|
sentence = generate_sentence() |
|
tagged_words = analyze_sentence(sentence) |
|
inputs = {word: gr.inputs.Dropdown(choices=pos_tags) for word, tag in tagged_words} |
|
inputs['submit'] = gr.inputs.Button(label='Submit') |
|
outputs = gr.outputs.Textbox() |
|
|
|
iface = gr.Interface(fn=process_form, inputs=inputs, outputs=outputs) |
|
iface.launch() |
|
|