Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,30 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from kommunicate import Kommunicate
|
4 |
|
5 |
-
|
6 |
-
nlp = spacy.load('es_core_news_sm')
|
7 |
|
8 |
-
|
9 |
-
pos_map = {
|
10 |
-
'sustantivo': 'NOUN',
|
11 |
-
'verbo': 'VERB',
|
12 |
-
'adjetivo': 'ADJ',
|
13 |
-
'art铆culo': 'DET'
|
14 |
-
}
|
15 |
|
16 |
-
|
17 |
-
def
|
18 |
-
|
19 |
-
pos_tags = [(token.text, token.pos_) for token in doc]
|
20 |
-
return pos_tags
|
21 |
|
22 |
-
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
if pos.lower() == user_pos.lower():
|
29 |
-
return True, f'隆Correcto! "{user_word}" es un {user_pos}.'
|
30 |
-
else:
|
31 |
-
return False, f'Incorrecto. "{user_word}" no es un {user_pos}, es un {pos}.'
|
32 |
-
return False, f'La palabra "{user_word}" no se encuentra en la frase.'
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
correct, message = game_logic(sentence, user_word, user_pos)
|
38 |
-
return message
|
39 |
-
else:
|
40 |
-
return 'Por favor, introduce una frase, una palabra y selecciona una funci贸n gramatical v谩lida (sustantivo, verbo, adjetivo, art铆culo).'
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
iface.launch()
|
|
|
1 |
+
from flask import Flask, request, render_template
|
2 |
+
from transformers import pipeline
|
|
|
3 |
|
4 |
+
app = Flask(__name__)
|
|
|
5 |
|
6 |
+
nlp = pipeline('sentiment-analysis')
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
@app.route('/')
|
9 |
+
def home():
|
10 |
+
return render_template('index.html')
|
|
|
|
|
11 |
|
12 |
+
@app.route('/predict',methods=['POST'])
|
13 |
+
def predict():
|
14 |
+
if request.method == 'POST':
|
15 |
+
message = request.form['message']
|
16 |
+
prediction = nlp(message)
|
17 |
+
return render_template('index.html', prediction_text=prediction)
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
if __name__ == "__main__":
|
20 |
+
app.run(debug=True)
|
21 |
+
from transformers import GPT3LMHeadModel, GPT2Tokenizer
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
24 |
+
model = GPT3LMHeadModel.from_pretrained("gpt3")
|
25 |
+
|
26 |
+
def get_response(prompt):
|
27 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
28 |
+
outputs = model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
|
29 |
+
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
30 |
+
return response
|
|