Merlintxu commited on
Commit
29585cd
1 Parent(s): 4130016

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -44
app.py CHANGED
@@ -1,50 +1,30 @@
1
- import gradio as gr
2
- import spacy
3
- from kommunicate import Kommunicate
4
 
5
- # Load the Spanish model for spaCy
6
- nlp = spacy.load('es_core_news_sm')
7
 
8
- # Map the Spanish POS tags to their English equivalents
9
- pos_map = {
10
- 'sustantivo': 'NOUN',
11
- 'verbo': 'VERB',
12
- 'adjetivo': 'ADJ',
13
- 'art铆culo': 'DET'
14
- }
15
 
16
- # Function to identify the POS tags in a sentence
17
- def identify_pos(sentence):
18
- doc = nlp(sentence)
19
- pos_tags = [(token.text, token.pos_) for token in doc]
20
- return pos_tags
21
 
22
- # Game logic
23
- def game_logic(sentence, user_word, user_pos):
24
- correct_answers = identify_pos(sentence)
25
- user_pos = pos_map[user_pos.lower()]
26
- for word, pos in correct_answers:
27
- if word == user_word:
28
- if pos.lower() == user_pos.lower():
29
- return True, f'隆Correcto! "{user_word}" es un {user_pos}.'
30
- else:
31
- return False, f'Incorrecto. "{user_word}" no es un {user_pos}, es un {pos}.'
32
- return False, f'La palabra "{user_word}" no se encuentra en la frase.'
33
 
34
- # Main function for the Gradio interface
35
- def main(sentence, user_word, user_pos):
36
- if sentence and user_word and user_pos and user_pos != 'Selecciona una funci贸n gramatical...':
37
- correct, message = game_logic(sentence, user_word, user_pos)
38
- return message
39
- else:
40
- return 'Por favor, introduce una frase, una palabra y selecciona una funci贸n gramatical v谩lida (sustantivo, verbo, adjetivo, art铆culo).'
41
 
42
- # Create the Gradio interface
43
- iface = gr.Interface(fn=main,
44
- inputs=[
45
- gr.inputs.Textbox(lines=2, placeholder='Introduce una frase aqu铆...'),
46
- gr.inputs.Textbox(lines=1, placeholder='Introduce una palabra aqu铆...'),
47
- gr.inputs.Dropdown(choices=['Selecciona una funci贸n gramatical...', 'sustantivo', 'verbo', 'adjetivo', 'art铆culo'])
48
- ],
49
- outputs=gr.outputs.Textbox())
50
- iface.launch()
 
1
+ from flask import Flask, request, render_template
2
+ from transformers import pipeline
 
3
 
4
+ app = Flask(__name__)
 
5
 
6
+ nlp = pipeline('sentiment-analysis')
 
 
 
 
 
 
7
 
8
+ @app.route('/')
9
+ def home():
10
+ return render_template('index.html')
 
 
11
 
12
+ @app.route('/predict',methods=['POST'])
13
+ def predict():
14
+ if request.method == 'POST':
15
+ message = request.form['message']
16
+ prediction = nlp(message)
17
+ return render_template('index.html', prediction_text=prediction)
 
 
 
 
 
18
 
19
+ if __name__ == "__main__":
20
+ app.run(debug=True)
21
+ from transformers import GPT3LMHeadModel, GPT2Tokenizer
 
 
 
 
22
 
23
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
24
+ model = GPT3LMHeadModel.from_pretrained("gpt3")
25
+
26
+ def get_response(prompt):
27
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
28
+ outputs = model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
29
+ response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
30
+ return response