Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
## app.py ##
|
2 |
-
from transformers import pipeline
|
3 |
from gradio import Interface
|
4 |
import gradio as gr
|
5 |
|
@@ -8,14 +8,32 @@ MODELS = {
|
|
8 |
"T5": "lmsys/fastchat-t5-3b-v1.0",
|
9 |
"Bert": "bert-base-multilingual-cased",
|
10 |
"GPT2": "datificate/gpt2-small-spanish",
|
11 |
-
"bloom":"bigscience/bloom"
|
12 |
}
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Define your function
|
15 |
def generate_and_analyze(model_name, input_text):
|
16 |
# Load the model from the dictionary using the selected model name
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
result = text_generator(input_text, max_length=250, do_sample=True)[0]
|
20 |
return result['generated_text']
|
21 |
|
@@ -23,10 +41,9 @@ def generate_and_analyze(model_name, input_text):
|
|
23 |
iface = gr.Interface(
|
24 |
fn=generate_and_analyze,
|
25 |
inputs=[
|
26 |
-
gr.inputs.Dropdown(choices=list(MODELS.keys()), label="Model"),
|
27 |
gr.inputs.Textbox(lines=2, label="Input Text")
|
28 |
],
|
29 |
outputs="text"
|
30 |
)
|
31 |
iface.launch()
|
32 |
-
|
|
|
1 |
## app.py ##
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from gradio import Interface
|
4 |
import gradio as gr
|
5 |
|
|
|
8 |
"T5": "lmsys/fastchat-t5-3b-v1.0",
|
9 |
"Bert": "bert-base-multilingual-cased",
|
10 |
"GPT2": "datificate/gpt2-small-spanish",
|
|
|
11 |
}
|
12 |
|
13 |
+
TOKENIZERS = {
|
14 |
+
"T5": None,
|
15 |
+
"Bert": None,
|
16 |
+
"GPT2": None,
|
17 |
+
}
|
18 |
+
|
19 |
+
# Load Bloom model separately with memory optimizations
|
20 |
+
model_bloom = AutoModelForCausalLM.from_pretrained("bigscience/bloom", low_cpu_mem_usage=True)
|
21 |
+
tokenizer_bloom = AutoTokenizer.from_pretrained("bigscience/bloom")
|
22 |
+
|
23 |
# Define your function
|
24 |
def generate_and_analyze(model_name, input_text):
|
25 |
# Load the model from the dictionary using the selected model name
|
26 |
+
if model_name == "bloom":
|
27 |
+
model = model_bloom
|
28 |
+
tokenizer = tokenizer_bloom
|
29 |
+
else:
|
30 |
+
model = MODELS[model_name]
|
31 |
+
tokenizer = TOKENIZERS[model_name]
|
32 |
+
if tokenizer is None: # Load tokenizer if not already done
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
34 |
+
TOKENIZERS[model_name] = tokenizer
|
35 |
+
|
36 |
+
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=0) # Use GPU if available
|
37 |
result = text_generator(input_text, max_length=250, do_sample=True)[0]
|
38 |
return result['generated_text']
|
39 |
|
|
|
41 |
iface = gr.Interface(
|
42 |
fn=generate_and_analyze,
|
43 |
inputs=[
|
44 |
+
gr.inputs.Dropdown(choices=list(MODELS.keys()) + ["bloom"], label="Model"),
|
45 |
gr.inputs.Textbox(lines=2, label="Input Text")
|
46 |
],
|
47 |
outputs="text"
|
48 |
)
|
49 |
iface.launch()
|
|